欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  web前端

deno通信实现的方法(附代码)

程序员文章站 2022-03-11 22:13:36
...
本篇文章给大家带来的内容是关于deno通信实现的方法(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

通信方式

deno执行代码和node相似,包含同步和异步的方式, 异步方式通过Promise.then实现。

Typescript/Javascript调用rust

在上一节中讲到deno的启动时会初始化v8 isolate实例,在初始化的过程中,会将c++的函数绑定到v8 isolate的实例上,在v8执行Javascript代码时,可以像调用Javascript函数一样调用这些绑定的函数。具体的绑定实现如下:

void InitializeContext(v8::Isolate* isolate, v8::Local<v8::Context> context) {
  v8::HandleScope handle_scope(isolate);
  v8::Context::Scope context_scope(context);

  auto global = context->Global();

  auto deno_val = v8::Object::New(isolate);
  CHECK(global->Set(context, deno::v8_str("libdeno"), deno_val).FromJust());

  auto print_tmpl = v8::FunctionTemplate::New(isolate, Print);
  auto print_val = print_tmpl->GetFunction(context).ToLocalChecked();
  CHECK(deno_val->Set(context, deno::v8_str("print"), print_val).FromJust());

  auto recv_tmpl = v8::FunctionTemplate::New(isolate, Recv);
  auto recv_val = recv_tmpl->GetFunction(context).ToLocalChecked();
  CHECK(deno_val->Set(context, deno::v8_str("recv"), recv_val).FromJust());

  auto send_tmpl = v8::FunctionTemplate::New(isolate, Send);
  auto send_val = send_tmpl->GetFunction(context).ToLocalChecked();
  CHECK(deno_val->Set(context, deno::v8_str("send"), send_val).FromJust());

  auto eval_context_tmpl = v8::FunctionTemplate::New(isolate, EvalContext);
  auto eval_context_val =
      eval_context_tmpl->GetFunction(context).ToLocalChecked();
  CHECK(deno_val->Set(context, deno::v8_str("evalContext"), eval_context_val)
            .FromJust());

  auto error_to_json_tmpl = v8::FunctionTemplate::New(isolate, ErrorToJSON);
  auto error_to_json_val =
      error_to_json_tmpl->GetFunction(context).ToLocalChecked();
  CHECK(deno_val->Set(context, deno::v8_str("errorToJSON"), error_to_json_val)
            .FromJust());

  CHECK(deno_val->SetAccessor(context, deno::v8_str("shared"), Shared)
            .FromJust());
}

在完成绑定之后,在Typescript中可以通过如下代码实现c++方法和Typescript方法的映射

libdeno.ts
interface Libdeno {
  recv(cb: MessageCallback): void;

  send(control: ArrayBufferView, data?: ArrayBufferView): null | Uint8Array;

  print(x: string, isErr?: boolean): void;

  shared: ArrayBuffer;

  /** Evaluate provided code in the current context.
   * It differs from eval(...) in that it does not create a new context.
   * Returns an array: [output, errInfo].
   * If an error occurs, `output` becomes null and `errInfo` is non-null.
   */
  // eslint-disable-next-line @typescript-eslint/no-explicit-any
  evalContext(code: string): [any, EvalErrorInfo | null];

  errorToJSON: (e: Error) => string;
}

export const libdeno = window.libdeno as Libdeno;

在执行Typescript代码时,只需要引入libdeno,就直接调用c++方法,例如:

import { libdeno } from "./libdeno";
function sendInternal(
  builder: flatbuffers.Builder,
  innerType: msg.Any,
  inner: flatbuffers.Offset,
  data: undefined | ArrayBufferView,
  sync = true
): [number, null | Uint8Array] {
  const cmdId = nextCmdId++;
  msg.Base.startBase(builder);
  msg.Base.addInner(builder, inner);
  msg.Base.addInnerType(builder, innerType);
  msg.Base.addSync(builder, sync);
  msg.Base.addCmdId(builder, cmdId);
  builder.finish(msg.Base.endBase(builder));
  const res = libdeno.send(builder.asUint8Array(), data);
  builder.inUse = false;
  return [cmdId, res];
}

调用libdeno.send方法可以将数据传给c++,然后通过c++去调用rust代码实现具体的工程操作。

Typescript层同步异步实现

同步

在Typescript中只需要设置sendInternal方法的sync参数为true即可,在rust中会根据sync参数去判断是执行同步或者异步操作,如果sync为true,libdeono.send方法会返回执行的结果,rust和typescript之间传递数据需要将数据序列化,这里序列化操作使用的是flatbuffer库。

const [cmdId, resBuf] = sendInternal(builder, innerType, inner, data, true);
异步实现

同理,实现异步方式,只需要设置sync参数为false即可,但是异步操作和同步相比,多了回掉方法,在执行异步通信时,libdeno.send方法会返回一个唯一的cmdId标志这次调用操作。同时在异步通信完成后,会创建一个promise对象,将cmdId作为key,promise作为value,加入map中。代码如下:

const [cmdId, resBuf] = sendInternal(builder, innerType, inner, data, false);
  util.assert(resBuf == null);
  const promise = util.createResolvable<msg.Base>();
  promiseTable.set(cmdId, promise);
  return promise;

rust实现同步和异步

当在Typescript中调用libdeno.send方法时,调用了C++文件binding.cc中的Send方法,该方法是在deno初始化时绑定到v8 isolate上去的。在Send方法中去调用了ops.rs文件中的dispatch方法,该方法实现了消息到函数的映射。每个类型的消息对应了一种函数,例如读文件消息对应了读文件的函数。

pub fn dispatch(
  isolate: &Isolate,
  control: libdeno::deno_buf,
  data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
  let base = msg::get_root_as_base(&control);
  let is_sync = base.sync();
  let inner_type = base.inner_type();
  let cmd_id = base.cmd_id();

  let op: Box<Op> = if inner_type == msg::Any::SetTimeout {
    // SetTimeout is an exceptional op: the global timeout field is part of the
    // Isolate state (not the IsolateState state) and it must be updated on the
    // main thread.
    assert_eq!(is_sync, true);
    op_set_timeout(isolate, &base, data)
  } else {
    // Handle regular ops.
    let op_creator: OpCreator = match inner_type {
      msg::Any::Accept => op_accept,
      msg::Any::Chdir => op_chdir,
      msg::Any::Chmod => op_chmod,
      msg::Any::Close => op_close,
      msg::Any::FetchModuleMetaData => op_fetch_module_meta_data,
      msg::Any::CopyFile => op_copy_file,
      msg::Any::Cwd => op_cwd,
      msg::Any::Dial => op_dial,
      msg::Any::Environ => op_env,
      msg::Any::Exit => op_exit,
      msg::Any::Fetch => op_fetch,
      msg::Any::FormatError => op_format_error,
      msg::Any::Listen => op_listen,
      msg::Any::MakeTempDir => op_make_temp_dir,
      msg::Any::Metrics => op_metrics,
      msg::Any::Mkdir => op_mkdir,
      msg::Any::Open => op_open,
      msg::Any::ReadDir => op_read_dir,
      msg::Any::ReadFile => op_read_file,
      msg::Any::Readlink => op_read_link,
      msg::Any::Read => op_read,
      msg::Any::Remove => op_remove,
      msg::Any::Rename => op_rename,
      msg::Any::ReplReadline => op_repl_readline,
      msg::Any::ReplStart => op_repl_start,
      msg::Any::Resources => op_resources,
      msg::Any::Run => op_run,
      msg::Any::RunStatus => op_run_status,
      msg::Any::SetEnv => op_set_env,
      msg::Any::Shutdown => op_shutdown,
      msg::Any::Start => op_start,
      msg::Any::Stat => op_stat,
      msg::Any::Symlink => op_symlink,
      msg::Any::Truncate => op_truncate,
      msg::Any::WorkerGetMessage => op_worker_get_message,
      msg::Any::WorkerPostMessage => op_worker_post_message,
      msg::Any::Write => op_write,
      msg::Any::WriteFile => op_write_file,
      msg::Any::Now => op_now,
      msg::Any::IsTTY => op_is_tty,
      msg::Any::Seek => op_seek,
      msg::Any::Permissions => op_permissions,
      msg::Any::PermissionRevoke => op_revoke_permission,
      _ => panic!(format!(
        "Unhandled message {}",
        msg::enum_name_any(inner_type)
      )),
    };
    op_creator(&isolate, &base, data)
  };

  // ...省略多余的代码
}

在每个类型的函数中会根据在Typescript中调用libdeo.send方法时传入的sync参数值去判断同步执行还是异步执行。

let (is_sync, op) = dispatch(isolate, control_buf, zero_copy_buf);
同步执行

在执行dispatch方法后,会返回is_sync的变量,如果is_sync为true,表示该方法是同步执行的,op表示返回的结果。rust代码会调用c++文件api.cc中的deno_respond方法,将执行结果同步回去,deno_respond方法中根据current_args_的值去判断是否为同步消息,如果current_args_存在值,则直接返回结果。

异步执行

在deno中,执行异步操作是通过rust的Tokio模块来实现的,在调用dispatch方法后,如果是异步操作,is_sync的值为false,op不再是执行结果,而是一个执行函数。通过tokio模块派生一个线程程异步去执行该函数。

    let task = op
      .and_then(move |buf| {
        let sender = tx; // tx is moved to new thread
        sender.send((zero_copy_id, buf)).expect("tx.send error");
        Ok(())
      }).map_err(|_| ());
    tokio::spawn(task);

在deno初始化时,会创建一个管道,代码如下:

let (tx, rx) = mpsc::channel::<(usize, Buf)>();

管道可以实现不同线程之间的通信,由于异步操作是创建了一个新的线程去执行的,所以子线程无法直接和主线程之间通信,需要通过管道的机制去实现。在异步代码执行完成后,调用tx.send方法将执行结果加入管道里面,event loop会每次从管道里面去读取结果返回回去。

Event Loop

由于异步操作依赖事件循环,所以先解释一下deno中的事件循环,其实事件循环很简单,就是一段循环执行的代码,当达到条件后,事件循环会结束执行,deno中主要的事件循环代码实现如下:

pub fn event_loop(&self) -> Result<(), JSError> {
    // Main thread event loop.
    while !self.is_idle() {
      match recv_deadline(&self.rx, self.get_timeout_due()) {
        Ok((zero_copy_id, buf)) => self.complete_op(zero_copy_id, buf),
        Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
        Err(e) => panic!("recv_deadline() failed: {:?}", e),
      }
      self.check_promise_errors();
      if let Some(err) = self.last_exception() {
        return Err(err);
      }
    }
    // Check on done
    self.check_promise_errors();
    if let Some(err) = self.last_exception() {
      return Err(err);
    }
    Ok(())
  }

self.is_idle方法用来判断是否所有的异步操作都执行完毕,当所有的异步操作都执行完毕后,停止事件循环,is_idle方法代码如下:

fn is_idle(&self) -> bool {
    self.ntasks.get() == 0 && self.get_timeout_due().is_none()
  }

当产生一次异步方法调用时,会调用下面的方法,使ntasks内部的值加1,

fn ntasks_increment(&self) {
    assert!(self.ntasks.get() >= 0);
    self.ntasks.set(self.ntasks.get() + 1);
  }

在event loop循环中,每次从管道中去取值,这里event loop充消费者,执行异步方法的子线程充当生产者。如果在一次事件循环中,获取到了一次执行结果,那么会调用ntasks_decrement方法,使ntasks内部的值减1,当ntasks的值为0的时候,事件循环会退出执行。在每次循环中,将管道中取得的值作为参数,调用complete_op方法,将结果返回回去。

rust中将异步操作结果返回回去

在初始化v8实例时,绑定的c++方法中有一个Recv方法,该方法的作用时暴露一个Typescript的函数给rust,在deno的io.ts文件的start方法中执行libdeno.recv(handleAsyncMsgFromRust),将handleAsyncMsgFromRust函数通过c++方法暴露给rust。具体实现如下:

export function start(source?: string): msg.StartRes {
  libdeno.recv(handleAsyncMsgFromRust);

  // First we send an empty `Start` message to let the privileged side know we
  // are ready. The response should be a `StartRes` message containing the CLI
  // args and other info.
  const startResMsg = sendStart();

  util.setLogDebug(startResMsg.debugFlag(), source);

  setGlobals(startResMsg.pid(), startResMsg.noColor(), startResMsg.execPath()!);

  return startResMsg;
}

当异步操作执行完成后,可以在rust中直接调用handleAsyncMsgFromRust方法,将结果返回给Typescript。先看一下handleAsyncMsgFromRust方法的实现细节:

export function handleAsyncMsgFromRust(ui8: Uint8Array): void {
  // If a the buffer is empty, recv() on the native side timed out and we
  // did not receive a message.
  if (ui8 && ui8.length) {
    const bb = new flatbuffers.ByteBuffer(ui8);
    const base = msg.Base.getRootAsBase(bb);
    const cmdId = base.cmdId();
    const promise = promiseTable.get(cmdId);
    util.assert(promise != null, `Expecting promise in table. ${cmdId}`);
    promiseTable.delete(cmdId);
    const err = errors.maybeError(base);
    if (err != null) {
      promise!.reject(err);
    } else {
      promise!.resolve(base);
    }
  }
  // Fire timers that have become runnable.
  fireTimers();
}

从代码handleAsyncMsgFromRust方法的实现中可以知道,首先通过flatbuffer反序列化返回的结果,然后获取返回结果的cmdId,根据cmdId获取之前创建的promise对象,然后调用promise.resolve方法触发promise.then中的代码执行。

以上就是deno通信实现的方法(附代码)的详细内容,更多请关注其它相关文章!