人工智能学习Pytorch数据集分割及动量示例详解
程序员文章站
2022-06-25 07:55:12
目录1.数据集分割2.正则化3.动量和学习率衰减1.数据集分割通过datasets可以直接分别获取训练集和测试集。通常我们会将训练集进行分割,通过torch.utils.data.random_spl...
1.数据集分割
通过datasets可以直接分别获取训练集和测试集。
通常我们会将训练集进行分割,通过torch.utils.data.random_split方法。
所有的数据都需要通过torch.util.data.dataloader进行加载,才可以得到可以使用的数据集。
具体代码如下:
2.
2.正则化
pytorch中的正则化和机器学习中的一样,不过设置方式不一样。
直接在优化器中,设置weight_decay即可。优化器中,默认的是l2范式,因此填入的参数就是lambda。想要使用l1范式的话,需要手动写出代码。
3.动量和学习率衰减
动量的设置可以直接在优化器中完成。通过momentum参数设置。
学习率的调整通过torch.optim.lr_scheduler中的reducelronplateau,steplr实现。
reducelronplateau是自动检测损失值,并衰减学习率。
steplr需要手动设置衰减的参数。
以上就是人工智能学习pytorch数据集分割及动量示例详解的详细内容,更多关于pytorch数据集分割及动量的资料请关注其它相关文章!