欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python机器基础逻辑回归与非监督学习

程序员文章站 2022-06-24 23:39:08
目录一、逻辑回归1.模型的保存与加载2.逻辑回归原理①逻辑回归的输入②sigmoid函数③逻辑回归的损失函数④逻辑回归特点3.逻辑回归api4.逻辑回归案例①案例概述②具体流程5.逻辑回归总结二、非监...

一、逻辑回归

1.模型的保存与加载

模型训练好之后,可以直接保存,需要用到joblib库。保存的时候是pkl格式,二进制,通过dump方法保存。加载的时候通过load方法即可。

安装joblib:conda install joblib

保存:joblib.dump(rf, 'test.pkl')

加载:estimator = joblib.load('模型路径')

加载后直接将测试集代入即可进行预测。

2.逻辑回归原理

逻辑回归是一种分类算法,但该分类的标准,是通过h(x)输入后,使用sigmoid函数进行转换,同时根据阈值,就能够针对不同的h(x)值,输出0-1之间的数。我们将这个0-1之间的输出,认为是概率。假设阈值是0.5,那么,大于0.5的我们认为是1,否则认为是0。逻辑回归适用于二分类问题。

①逻辑回归的输入

python机器基础逻辑回归与非监督学习

可以看出,输入还是线性回归的模型,里面还是有权重w,以及特征值x,我们的目标依旧是找出最合适的w。

②sigmoid函数

该函数图像如下:

python机器基础逻辑回归与非监督学习

该函数公式如下:

python机器基础逻辑回归与非监督学习

z就是回归的结果h(x),通过sigmoid函数的转化,无论z是什么值,输出都是在0-1之间。那么我们需要选择最合适的权重w,使得输出的概率及所得结果,能够尽可能地贴近训练集的目标值。因此,逻辑回归也有一个损失函数,称为对数似然损失函数。将其最小化,便可求得目标w。

③逻辑回归的损失函数

python机器基础逻辑回归与非监督学习

损失函数在y=1和0的时候的函数图像如下:

python机器基础逻辑回归与非监督学习

python机器基础逻辑回归与非监督学习

由上图可看出,若真实值类别是1,则h(x)给出的输出,越接近于1,损失函数越小,反之越大。当y=0时同理。所以可据此,当损失函数最小的时候,我们的目标就找到了。

④逻辑回归特点

逻辑回归也是通过梯度下降进行的求解。对于均方误差来说,只有一个最小值,不存在局部最低点;但对于对数似然损失,可能会出现多个局部最小值,目前没有一个能完全解决局部最小值问题的方法。因此,我们只能通过多次随机初始化,以及调整学习率的方法来尽量避免。不过,即使最后的结果是局部最优解,依旧是一个不错的模型。

3.逻辑回归api

sklearn.linear_model.logisticregression

python机器基础逻辑回归与非监督学习

其中penalty是正则化方式,c是惩罚力度。

4.逻辑回归案例

①案例概述

给定的数据中,是通过多个特征,综合判断肿瘤是否为恶性。

②具体流程

由于算法的流程基本一致,重点都在于数据和特征的处理,因此本文中不再详细阐述,代码如下:

python机器基础逻辑回归与非监督学习

注意:

逻辑回归的目标值不是0和1,而是2和4,但不需要进行处理,算法中会自动标记为0和1

算法预测完毕后,如果想看召回率,需要注意对所分的类别给出名字,但给名字之前需要先贴标签。见上图。否则方法不知道哪个是良性,哪个是恶性。贴标签的时候顺序需对应好。

一般情况下,哪个类别的样本少,就按照哪个来去判定。比如恶性的少,就以“判断属于恶性的概率是多少”来去判断

5.逻辑回归总结

应用:广告点击率预测、是否患病等二分类问题

优点:适合需要得到一个分类概率的场景

缺点:当特征空间很大时,逻辑回归的性能不是很好 (看硬件能力)

二、非监督学习

非监督学习就是,不给出正确答案。也就是说数据中没有目标值,只有特征值。

1.k-means聚类算法原理

假设聚类的类别为3类,流程如下:

①随机在数据中抽取三个样本,作为类别的三个中心点

②计算剩余的点分别道三个中心点的距离,从中选出距离最近的点作为自己的标记。形成三个族群

③分别计算这三个族群的平均值,把三个平均值与之前的三个中心点进行比较。如果相同,结束聚类,如果不同,把三个平均值作为新的聚类中心,重复第二步。

2.k-means api

sklearn.cluster.kmeans

python机器基础逻辑回归与非监督学习

通常情况下,聚类是做在分类之前。先把样本进行聚类,对其进行标记,接下来有新的样本的时候,就可以按照聚类所给的标准进行分类。

3.聚类性能评估

①性能评估原理

简单来说,就是类中的每一个点,与“类内的点”的距离,以及“类外的点”的距离。距离类内的点,越近越好。而距离类外的点,越远越好。

python机器基础逻辑回归与非监督学习

如果sc_i 小于0,说明a_i 的平均距离大于最近的其他簇。 聚类效果不好

如果sc_i 越大,说明a_i 的平均距离小于最近的其他簇。 聚类效果好

轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优

②性能评估api

sklearn.metrics.silhouette_score

python机器基础逻辑回归与非监督学习

聚类算法容易收敛到局部最优,可通过多次聚类解决。

以上就是python机器基础逻辑回归与非监督学习的详细内容,更多关于python机器学习逻辑回归与非监督的资料请关注其它相关文章!