欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

C语言入门(二十二)堆和链表

程序员文章站 2022-06-24 20:31:57
堆和链表 我们经常在题目中有要求,输入一个整数,然后以这个整数作为数组的元素个数,下面的程序代码是错误的。 int n,array[n]; scanf(%d,&n); 在turbo c中,...
堆和链表

我们经常在题目中有要求,输入一个整数,然后以这个整数作为数组的元素个数,下面的程序代码是错误的。
int n,array[n];
scanf(%d,&n);
在turbo c中,不允许出现动态数组。那么如果必须需要这样时,就只能使用链表了。


一、堆
堆是一种动态存储结构,实际上就是数据段中的*存储区,它是c语言中使用的一种名称,常常用于动态数据的存储分配。堆中存入一数据,总是以2字节的整数倍进行分配,地址向增加方向变动。堆可以不断进行分配直到没有堆空间为止,也可以随时进行释放、再分配,不存在次序问题。
所谓动态数组是指在程序运行期间确定其大小的,如常用到的动态数组,它们是在程序执行过程中动态进行变化的,即在程序开始部分没有说明大小,只有在程序运行期间用堆的分配函数为其分配存储空间,分配的大小可根据需要而定,这些数据使用过后,可释放它们占用的堆空间,并可进行再分配。
堆和栈在使用时相向生长,栈向上生长,即向小地址方向生长,而堆向下增长,即向大地址方向,其间剩余部分是*空间。使用过程中要防止增长过度而导致覆盖。
一般的程序我们都是使用小内存模式,它的内存分配如下:
________________
| 代码段 |
|————————|
| 数据段 |
|————————|
| bss段 |
|————————|
| 堆 |
|----------------| *空间
|----------------|
| 栈 |
|————————|
| 远堆 |
|----------------|
|________________| *空间

在堆和栈之间、以及远堆地址的后面都是*空间,总共是64k。
堆管理函数:
1.得到堆和栈之间的*空间大小的函数
小数据内存模式:unsigned coreleft(void);
大数据内存模式:unsigned long coreleft(void);
对于远堆,可以用farcoreleft()函数。
2.分配一个堆空间函数
void malloc (unsigned size);
该函数将分配一个大小为size字节的堆空间,并返回一个指向这个空间的指针。由于这个指针是void型的,因此当将它赋给其他类型的指针时,必须对该指针进行强制类型转换。例如info是一个结构类型指针,即:
struct addr *info;
将由malloc()函数返回的指针赋给info时,必须进行类型转换:
info=(struct addr *)malloc (sizeof(record));
malloc()函数所分配的堆空间将不进行初始化。在调用malloc()函数时,若当时没有可用的内存空间,该函数便返回一个null指针。
3.分配一个堆空间,其大小为能容纳几个元素,没有元素长度为size的函数
void calloc(unsigned n,unsigned size);
该函数将分配一个容量为n*size大小的堆空间,并用0初始化分配的空间。该函数将返回一个指向分配空间的指针,没有空间可用时,则返回一个null指针。
4.重新分配堆空间函数
void *realloc(void *ptr,unsigned newsize);
该函数将对由ptr指向的堆空间重新分配,大小变为newsize。
5.释放堆空间函数
void free(void *ptr);
下面举一个关于堆和栈的综合例子:
void push(int);
int pop();
int *pi,*tos;

main()
{
int v;
pi=(int *)malloc(50*sizeof(int));
if(!pi)
{
printf(allocation failure\n);
exit(0);
}
tos=pi;
do
{
printf(please input value,push it;enter 0 then pop;(enter -1 then stop)\n);
scanf(%d,&v);
if(v!=0) push(v);
else printf(pop this is it %d\n,pop());
}
while(v!=-1);
}

void push(int i)
{
pi++;
if(pi==(tos+50))
{
printf(stack overflow\n);
exit(0);
}
*pi=i;
}

int pop()
{
if(pi==tos)
{
printf(stack underflow\n);
exit(0);
}
pi--;
return *(pi+1);
}
程序分配100字节的堆空间,转换成int型赋给pi,当pi为null时,表示没有可用的空间了,则显示allocation failure。输入一个整数,压入栈中,当超过50时,则显示stack overflow.当输入0时,则把栈中的数据弹出。这个程序也演示了栈的后进先出的特点。


二、链表
堆是用来存储动态数据的。动态数据最典型的例子就是链表。
形象的说:将若干个数据项按一定的原则前后链接起来,没有数据项都有一个指向下一个数据的指针,则这些数据项靠指针链成一个表,最后的一个数据没有指针(指针为null),这就是链表。可以看出链表放在存储器中,并不一定象数组一样,连续存放,也可以分开存放。由于链的各节点均带有指向下一个节点的地址,因而要找到某个节点,必须要找到上一个节点,如此类推,则可由第一个节点出发找到目的点。链表在建立和管理中用得比较普遍。
链表中的每个节点都具有相同的结构类型,它们是由两部分组成,即数据部分(它们包含一些有用的信息),另一部分就是链的指针。下面就定义一个通信链节点的数据结构:
struct address
{
char name[30];
char street[40];
char city[20];
char state[10];
char zip[6];
struct address *next; /*pointer to next entry*/
}list_entry;
该结构中前五个成员是该节点的信息部分,最后一个成员是指向同一个结构类型的指针。即next又指向一个同样结构类型的节点。

1.建立链表
建立链表时,首先要将第一个节点的内容存入堆中,为此要将堆中能存入该节点内容的内存区域首地址赋给一个指针。我们可以用malloc()函数来分配内存区域。如info是一个指针:
info=(struct address *)malloc(sizeof(list_entry));
当第一个节点存入有info指出的内存区后,再执行该函数,便得到狭义个节点的存储地址info,此时将该info赋给上一个节点的next,并将该节点内容存入info指出的内存区,这样两个节点就链接起来了。此过程反复多次,就可不断的将节点加入链表的尾端。
#include stdlib.h
#include alloc.h
#include stdio.h
#include string.h
struct address
{
char name[30];
char street[40];
char city[20];
char state[10];
char zip[6];
struct address *next;
}list_entry;
void inputs(char *,char *,int);
void dls_store(struct address*);

main()
{
struct address *info;
int i;
for(i=0;i<5;i++)
{
info=(struct address *)malloc(sizeof(list_entry));
inputs(enter name:,info->name,30);
inputs(enter street:,info->street,40);
inputs(enter city:,info->city,20);
inputs(enter state:,info->state,10);
inputs(enter zip:,info->zip,6);
dls_store(info);
}
}

void inputs(char *prompt,char *s,int count)
{
char p[255];
do
{
printf(prompt);
gets(p);
if(strlen(p)>count) printf(\n too long \n);
}
while(strlen(p)>count);
strcpy(s,p);
}

void dls_store(struct address *in)
{
static struct address *last=null;
if(!last) last=in;
else last->next=in;
in->next=null;
last=in;
}
inputs()函数比较简单,就不说明了。
dls_store()函数是将输入的节点地址写到上一个节点的next指针项。其中定义的结构指针last是一个静态变量,初始值为null,这意味着在编译时将为该变量分配一个固定的存储空间以存放其值。因初始值为null,这样在第一次调用该函数时,由于它代表一个空指针,因而把由malloc()分配的第一个节点地址赋给它,使last指向该节点,第二次调用时,静态变量last已指向第一个节点地址。如此反复调用,便建立起了n次调用产生的n个节点的链了(本题n=5)。

2.链数据的插入和删除
对于一个已排序好的链表(假设是生序),现在想插入一个数据进去,可能有三种情况:
(1).比首项数据还小,即插入的数据作为首项出现:
这种情况我们的处理方法是:把该数据作为第一项,指针指向原先的首项即可。设原先首项为top,待插入的数据为in,则:
in->next=top;
即可让该数据作为链表的头。
(2).比最后一项大,即插入的数据作为最后一项出现:
这也很好办,设原先最后一项为old,则:
old->next=in;
in->next=null;
(3).作为中间某一项出现:前面是old,后面是top,则:
old->next=in;
in->next=top;
如果想删除一个数据,也可能是出现在开头,中间和结尾。
例如想删除in这个数据,它原先的前面是old,后面是top,即原先的链表是这样:
old->next=in;
in->next=top;
现在删除in,只需把old指向top即可:
old->next=top->next;
/*删除节点函数*/
void delete(struct address *info,struct address *old)
{
if(info)
{
if(info==start) start=info->next; /*删除的是第一个节点*/
else
{
old->next=info->next; /*被删除节点前的指针指向下一个节点*/
last=old; /*若节点是链表尾,则该节点前的节点指针指向null*/
}
free(info); /*释放删除节点占用空间*/
}
}
/*查找链表中是否有该数据*/
struct address *search(struct address *top,char *n)
{
while(top)
{
if(!strcmp(n,top->name)) return top; /*找到要删除的节点指针*/
top=top->next; /*继续找*/
}
return null; /*没有找到*/
}
/*链表的输出*/
void display(struct address *top)
{
while(top)
{
printf(top->name);
top=top->next;
}
}

 

链表问题比较复杂,但又是很重要的概念。上面说的输入,查找,删除,插入等功能一定要理解,可以参考别的一些资料看看。

上面说的单链表,但是单链表有一个缺点,就是无法反向操作,当某一个链因破坏而断裂,则整个链就被破坏而无法恢复。双链表可以弥补这个缺点,所谓双链表是指每个节点有两个指针项,一个指针指向其前面的节点,而另一个指针指向后面的节点。关于双链表的使用相对要复杂一些,这里就不介绍了,可以找其他一些资料看看。