Python序列化基础知识(json/pickle)
我们把对象(变量)从内存中变成可存储的过程称之为序列化,比如XML,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化后,就可以把序列化后的内容写入磁盘,或者通过网络传输到其他服务器上,反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling
json(JavaScript Object Notation)
一种轻量级的数据交换格式。它基于ECMAScript的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C、C++、Java、JavaScript、Perl、Python等)。这些特性使JSON成为理想的数据交换语言。易于人阅读和编写,同时也易于机器解析和生成(一般用于提升网络传输速率)。
如果我们要在不同的变成语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输,JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便,JSON表示的对象就是标准的JavaScript语言的对象。
使用方法如下:
import json # 序列化写(json.dumps()) with open('test.txt', 'w') as f: f.write(json.dumps(dic)) # 序列化读(json.loads) with open('test.txt', 'r') as f: print(json.loads(f.read())) import json dic = {'name': 'fanjinbao'} # 序列化写(json.dump()) with open('test.txt', 'w') as f: json.dump(dic, f) # 序列化读(json.load()) with open('test.txt', 'r') as f: print(json.load(f))
pickle
python的pickle模块实现了python的所有数据序列和反序列化。基本上功能使用和JSON模块没有太大区别,方法也同样是dumps/dump和loads/load。cPickle是pickle模块的C语言编译版本相对速度更快。与JSON不同的是pickle不是用于多种语言间的数据传输,它仅作为python对象的持久化或者python程序间进行互相传输对象的方法,因此它支持了python所有的数据类型。
pickle反序列化后的对象与原对象是等值的副本对象,类似与deepcopy。
使用方法如下:
import pickle dic = {'name': 'fanjinbao'} # 序列化写(pickle.dump()) with open('test.txt', 'wb') as f: f.write(pickle.dumps(dic)) # 序列化读(pickle.loads()) with open('test.txt', 'rb') as f: print(pickle.loads(f.read())) import pickle dic = {'name': 'fanjinbao'} # 序列化写(pickle.dump()) with open('test.txt', 'wb') as f: pickle.dump(dic, f) # 序列化读(pickle.load()) with open('test.txt', 'rb') as f: print(pickle.load(f))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
推荐阅读
-
python开发pickle和json序列化及json配置文件常见问题
-
Python3.5 Json与pickle实现数据序列化与反序列化操作示例
-
Python 序列化 pickle/cPickle模块使用介绍
-
Python开发之序列化与反序列化:pickle、json模块使用详解
-
Python pickle类库介绍(对象序列化和反序列化)
-
python基础(20):序列化、json模块、pickle模块
-
Python学习 :json、pickle&shelve 模块
-
序列化模块 json pickle shelve
-
Python: Json串反序列化为自定义类对象
-
Python 序列化模块(json,pickle,shelve) 百日筑基之得气(三)