Python Flask搭建yolov3目标检测系统详解流程
程序员文章站
2022-06-23 20:19:12
【人工智能项目】python flask搭建yolov3目标检测系统后端代码from flask import flask, request, jsonifyfrom pil import image...
【人工智能项目】python flask搭建yolov3目标检测系统
后端代码
from flask import flask, request, jsonify from pil import image import numpy as np import base64 import io import os from backend.tf_inference import load_model, inference os.environ['cuda_visible_devices'] = '0' sess, detection_graph = load_model() app = flask(__name__) @app.route('/api/', methods=["post"]) def main_interface(): response = request.get_json() data_str = response['image'] point = data_str.find(',') base64_str = data_str[point:] # remove unused part like this: "data:image/jpeg;base64," image = base64.b64decode(base64_str) img = image.open(io.bytesio(image)) if(img.mode!='rgb'): img = img.convert("rgb") # convert to numpy array. img_arr = np.array(img) # do object detection in inference function. results = inference(sess, detection_graph, img_arr, conf_thresh=0.7) print(results) return jsonify(results) @app.after_request def add_headers(response): response.headers.add('access-control-allow-origin', '*') response.headers.add('access-control-allow-headers', 'content-type,authorization') return response if __name__ == '__main__': app.run(debug=true, host='0.0.0.0')
展示部分
python -m http.server
python app.py
前端展示部分
到此这篇关于python flask搭建yolov3目标检测系统详解流程的文章就介绍到这了,更多相关python 目标检测系统内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
上一篇: 基于WebGL的三维大屏可视化技术实践 thingjs 3d 开发
下一篇: 中国烹饪的方式有多少