欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python卷积神经网络图片分类框架详解分析

程序员文章站 2022-06-23 19:39:54
【人工智能项目】卷积神经网络图片分类框架本次硬核分享当时做图片分类的工作,主要是整理了一个图片分类的框架,如果想换模型,引入新模型,在config中修改即可。那么走起来瓷!!!整体结构config在c...

【人工智能项目】卷积神经网络图片分类框架

Python卷积神经网络图片分类框架详解分析


本次硬核分享当时做图片分类的工作,主要是整理了一个图片分类的框架,如果想换模型,引入新模型,在config中修改即可。那么走起来瓷!!!

Python卷积神经网络图片分类框架详解分析

整体结构

Python卷积神经网络图片分类框架详解分析

config

在config文件夹下的config.py中主要定义数据集的位置,训练轮数,batch_size以及本次选用的模型。

# 定义训练集和测试集的路径
train_data_path = "./data/train/"
train_anno_path = "./data/train.csv"
test_data_path = "./data/test/"
# 定义多线程
num_workers = 8
# 定义batch_size大小
batch_size = 8

# 定义训练轮数
epochs = 20
# 定义k折交叉验证
k = 5
# 定义模型选择
# inception_v3_google inceptionv4
# vgg16
# resnet50 resnet101 resnet152 resnext50_32x4d resnext101_32x8d wide_resnet50_2  wide_resnet101_2
# senet154 se_resnet50 se_resnet101  se_resnet152  se_resnext50_32x4d  se_resnext101_32x4d
# nasnetalarge  pnasnet5large
# densenet121 densenet161 densenet169 densenet201
# efficientnet-b0 efficientnet-b1 efficientnet-b2 efficientnet-b3 efficientnet-b4 efficientnet-b5 efficientnet-b6 efficientnet-b7
# xception
# squeezenet1_0 squeezenet1_1
# mobilenet_v2
# mnasnet0_5 mnasnet0_75 mnasnet1_0 mnasnet1_3
# shufflenet_v2_x0_5 shufflenet_v2_x1_0
model_name = "vgg16"

# 定义分类类别
num_classes = 102
# 定义图片尺寸
img_width = 320
img_height = 320

data

data文件夹存放了train和test图片信息。

Python卷积神经网络图片分类框架详解分析


在train.csv中的存放图片名称以及对应的标签

Python卷积神经网络图片分类框架详解分析

dataloader

dataloader里面主要有data.py和data_augmentation.py文件。其中一个用于读取数据,另外一个用于数据增强操作。

import torch
from pil import image
from torch.utils.data.dataset import dataset
import numpy as np
import pil
from torchvision import transforms
from config import config
import  os
import cv2
# 定义dataset和transform


# 将df转换成标准的numpy array形式
def get_anno(path, images_path):
    data = []
    with open(path) as f:
        for line in f:
            idx, label = line.strip().split(',')
            data.append((os.path.join(images_path, idx), int(label)))
    return np.array(data)

# 定义读取traindata,读取df文件
# 通过df的idx,来获取image_path和label
class traindataset(dataset):
    def __init__(self, data, transform=none):
        self.data = data
        self.transform = transform

    def __getitem__(self, idx):
        img_path, label = self.data[idx]
        img = image.open(img_path).convert('rgb')
        #img = cv2.imread(img_path)
        #img = cv2.cvtcolor(img, cv2.color_bgr2rgb)
        if self.transform is not none:
            img = self.transform(img)
        return img, int(label)

    def __len__(self):
        return len(self.data)



# 通过文件路径来读取测试图片
class testdataset(dataset):
    def __init__(self, img_path, transform=none):
        self.img_path = img_path
        if transform is not none:
            self.transform = transform
        else:
            self.transform = none

    def __getitem__(self, index):
        img = image.open(self.img_path[index]).convert('rgb')
        # img = cv2.imread(self.img_path[index])
        # img = cv2.cvtcolor(img, cv2.color_bgr2rgb)

        if self.transform is not none:
            img = self.transform(img)
        return img

    def __len__(self):
        return len(self.img_path)


# train_transform = transforms.compose([
#     transforms.resize([config.img_width, config.img_height]),
#     transforms.randomrotation(10),
#     transforms.colorjitter(brightness=0.3, contrast=0.2),
#     transforms.randomhorizontalflip(),
#     transforms.totensor(),  # range [0, 255] -> [0.0,1.0]
#     transforms.normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])

train_transform = transforms.compose([
    transforms.pad(4, padding_mode='reflect'),
    transforms.randomrotation(10),
    transforms.randomresizedcrop([config.img_width, config.img_height]),
    transforms.randomhorizontalflip(),
    transforms.totensor(),
    transforms.normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

val_transform = transforms.compose([
    transforms.randomresizedcrop([config.img_width, config.img_height]),
    transforms.totensor(),
    transforms.normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

test_transform = transforms.compose([
    transforms.randomresizedcrop([config.img_width, config.img_height]),
    transforms.totensor(),
    transforms.normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
import random

from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle

# 固定角度随机旋转
class fixedrotation(object):
    def __init__(self, angles):
        self.angles = angles

    def __call__(self, img):
        return fixed_rotate(img, self.angles)


def fixed_rotate(img, angles):
    angles = list(angles)
    angles_num = len(angles)
    index = random.randint(0, angles_num - 1)
    return img.rotate(angles[index])



__all__ = ['compose','randomhflip', 'randomuppercrop', 'resize', 'uppercrop', 'randombottomcrop',"randomerasing",
           'bottomcrop', 'normalize', 'randomswapchannels', 'randomrotate', 'randomhshift',"centercrop","randomvflip",
           'expandborder', 'randomresizedcrop','randomdowncrop', 'downcrop', 'resizedcrop',"fixrandomrotate"]

def rotate_nobound(image, angle, center=none, scale=1.):
    (h, w) = image.shape[:2]


    # if the center is none, initialize it as the center of
    # the image
    if center is none:
        center = (w // 2, h // 2)

    # perform the rotation
    m = cv2.getrotationmatrix2d(center, angle, scale)
    rotated = cv2.warpaffine(image, m, (w, h))

    return rotated

def scale_down(src_size, size):
    w, h = size
    sw, sh = src_size
    if sh < h:
        w, h = float(w * sh) / h, sh
    if sw < w:
        w, h = sw, float(h * sw) / w
    return int(w), int(h)


def fixed_crop(src, x0, y0, w, h, size=none):
    out = src[y0:y0 + h, x0:x0 + w]
    if size is not none and (w, h) != size:
        out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.inter_cubic)
    return out

class fixrandomrotate(object):
    def __init__(self, angles=[0,90,180,270], bound=false):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 4)
        angle=self.angles[do_rotate]
        if self.bound:
            img = rotate_bound(img, angle)
        else:
            img = rotate_nobound(img, angle)
        return img

def center_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) / 2)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out


def bottom_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) * 0.75)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out

def rotate_bound(image, angle):
    # grab the dimensions of the image and then determine the
    # center
    h, w = image.shape[:2]

    (cx, cy) = (w // 2, h // 2)

    m = cv2.getrotationmatrix2d((cx, cy), angle, 1.0)
    cos = np.abs(m[0, 0])
    sin = np.abs(m[0, 1])

    # compute the new bounding dimensions of the image
    nw = int((h * sin) + (w * cos))
    nh = int((h * cos) + (w * sin))

    # adjust the rotation matrix to take into account translation
    m[0, 2] += (nw / 2) - cx
    m[1, 2] += (nh / 2) - cy

    rotated = cv2.warpaffine(image, m, (nw, nh))

    return rotated


class compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img
class randomrotate(object):
    def __init__(self, angles, bound=false):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 2)
        if do_rotate:
            angle = np.random.uniform(self.angles[0], self.angles[1])
            if self.bound:
                img = rotate_bound(img, angle)
            else:
                img = rotate_nobound(img, angle)
        return img
class randombrightness(object):
    def __init__(self, delta=10):
        assert delta >= 0
        assert delta <= 255
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image = (image + delta).clip(0.0, 255.0)
            # print('randombrightness,delta ',delta)
        return image


class randomcontrast(object):
    def __init__(self, lower=0.9, upper=1.05):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    # expects float image
    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            # print('contrast:', alpha)
            image = (image * alpha).clip(0.0,255.0)
        return image


class randomsaturation(object):
    def __init__(self, lower=0.8, upper=1.2):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image[:, :, 1] *= alpha
            # print('randomsaturation,alpha',alpha)
        return image


class randomhue(object):
    def __init__(self, delta=18.0):
        assert delta >= 0.0 and delta <= 360.0
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(-self.delta, self.delta)
            image[:, :, 0] += alpha
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
            # print('randomhue,alpha:', alpha)
        return image


class convertcolor(object):
    def __init__(self, current='bgr', transform='hsv'):
        self.transform = transform
        self.current = current

    def __call__(self, image):
        if self.current == 'bgr' and self.transform == 'hsv':
            image = cv2.cvtcolor(image, cv2.color_bgr2hsv)
        elif self.current == 'hsv' and self.transform == 'bgr':
            image = cv2.cvtcolor(image, cv2.color_hsv2bgr)
        else:
            raise notimplementederror
        return image

class randomswapchannels(object):
    def __call__(self, img):
        if np.random.randint(2):
            order = np.random.permutation(3)
            return img[:,:,order]
        return img

class randomcrop(object):
    def __init__(self, size):
        self.size = size
    def __call__(self, image):
        h, w, _ = image.shape
        new_w, new_h = scale_down((w, h), self.size)

        if w == new_w:
            x0 = 0
        else:
            x0 = random.randint(0, w - new_w)

        if h == new_h:
            y0 = 0
        else:
            y0 = random.randint(0, h - new_h)

        out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
        return out



class randomresizedcrop(object):
    def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio

    def __call__(self,img):
        if random.random() < 0.2:
            return cv2.resize(img,self.size)
        h, w, _ = img.shape
        area = h * w
        d=1
        for attempt in range(10):
            target_area = random.uniform(self.scale[0], self.scale[1]) * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                new_h, new_w = new_w, new_h

            if new_w < w and new_h < h:
                x0 = random.randint(0, w - new_w)
                y0 = (random.randint(0, h - new_h))//d
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                return out

        # fallback
        return center_crop(img, self.size)


class downcrop():
    def __init__(self, size,  select, scale=(0.36,0.81)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = h-new_h
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # fallback
        return center_crop(img, self.size), attr_idx


class resizedcrop(object):
    def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        h, w, _ = img.shape
        area = h * w
        d=1
        if attr_idx == 2:
            self.scale=(0.36,0.81)
            d=2
        if attr_idx == 0:
            self.scale=(0.81,1.0)

        target_area = (self.scale[0]+self.scale[1])/2.0 * area
        # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        # if random.random() < 0.5:
        #     new_h, new_w = new_w, new_h

        if new_w < w and new_h < h:
            x0 =  (w - new_w)//2
            y0 = (h - new_h)//d//2
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
            # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
            #
            # cv2.waitkey(0)
            return out, attr_idx

        # fallback
        return center_crop(img, self.size), attr_idx

class randomhflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 1)
        else:
            return image
class randomvflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 0)
        else:
            return image


class hflip(object):
    def __init__(self,dohflip):
        self.dohflip = dohflip

    def __call__(self, image):
        if self.dohflip:
            return cv2.flip(image, 1)
        else:
            return image


class centercrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image):
        return center_crop(image, self.size)

class uppercrop():
    def __init__(self, size, scale=(0.09, 0.64)):
        self.size = size
        self.scale = scale

    def __call__(self,img):
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = 0
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out

        # fallback
        return center_crop(img, self.size)



class randomuppercrop(object):
    def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))


            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint(0, h - new_h))//10
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # fallback
        return center_crop(img, self.size), attr_idx
class randomdowncrop(object):
    def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))
            #
            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint((h - new_h)*9//10, h - new_h))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
                # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
                #
                # cv2.waitkey(0)

                return out, attr_idx

        # fallback
        return center_crop(img, self.size), attr_idx

class randomhshift(object):
    def __init__(self, select, scale=(0.0, 0.2)):
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        do_shift_crop = random.randint(0, 2)
        if do_shift_crop:
            h, w, _ = img.shape
            min_shift = int(w*self.scale[0])
            max_shift = int(w*self.scale[1])
            shift_idx = random.randint(min_shift, max_shift)
            direction = random.randint(0,2)
            if direction:
                right_part = img[:, -shift_idx:, :]
                left_part = img[:, :-shift_idx, :]
            else:
                left_part = img[:, :shift_idx, :]
                right_part = img[:, shift_idx:, :]
            img = np.concatenate((right_part, left_part), axis=1)

        # fallback
        return img, attr_idx


class randombottomcrop(object):
    def __init__(self, size, select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area

            new_w = int(round(math.sqrt(target_area)))
            new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                dh = h - new_h
                x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
                y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # fallback
        return bottom_crop(img, self.size), attr_idx


class bottomcrop():
    def __init__(self, size,  select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/3.*2.

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            dh = h-new_h
            x0 = int(0.5*dw)
            y0 = int(0.9*dh)
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # fallback
        return bottom_crop(img, self.size), attr_idx



class resize(object):
    def __init__(self, size, inter=cv2.inter_cubic):
        self.size = size
        self.inter = inter

    def __call__(self, image):
        return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

class expandborder(object):
    def __init__(self,  mode='constant', value=255, size=(336,336), resize=false):
        self.mode = mode
        self.value = value
        self.resize = resize
        self.size = size

    def __call__(self, image):
        h, w, _ = image.shape
        if h > w:
            pad1 = (h-w)//2
            pad2 = h - w - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                               self.mode, constant_values=self.value)
            else:
                image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
        elif h < w:
            pad1 = (w-h)//2
            pad2 = w-h - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                               self.mode,constant_values=self.value)
            else:
                image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
        if self.resize:
            image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.inter_linear)
        return image
class astypetoint():
    def __call__(self, image, attr_idx):
        return image.clip(0,255.0).astype(np.uint8), attr_idx

class astypetofloat():
    def __call__(self, image, attr_idx):
        return image.astype(np.float32), attr_idx

import matplotlib.pyplot as plt
class normalize(object):
    def __init__(self,mean, std):
        '''
        :param mean: rgb order
        :param std:  rgb order
        '''
        self.mean = np.array(mean).reshape(3,1,1)
        self.std = np.array(std).reshape(3,1,1)
    def __call__(self, image):
        '''
        :param image:  (h,w,3)  rgb
        :return:
        '''
        # plt.figure(1)
        # plt.imshow(image)
        # plt.show()
        return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

class randomerasing(object):
    def __init__(self, select,epsilon=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
        self.epsilon = epsilon
        self.mean = mean
        self.sl = sl
        self.sh = sh
        self.r1 = r1
        self.select = select

    def __call__(self, img,attr_idx):
        if attr_idx not in self.select:
            return img,attr_idx

        if random.uniform(0, 1) > self.epsilon:
            return img,attr_idx

        for attempt in range(100):
            area = img.shape[1] * img.shape[2]

            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1 / self.r1)

            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.shape[2] and h <= img.shape[1]:
                x1 = random.randint(0, img.shape[1] - h)
                y1 = random.randint(0, img.shape[2] - w)
                if img.shape[0] == 3:
                    # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                    img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                    # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                else:
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                return img,attr_idx

        return img,attr_idx

# if __name__ == '__main__':
#     import matplotlib.pyplot as plt
#
#
#     class fsaug(object):
#         def __init__(self):
#             self.augment = compose([
#                 astypetofloat(),
#                 # randomhshift(scale=(0.,0.2),select=range(8)),
#                 # randomrotate(angles=(-20., 20.), bound=true),
#                 expandborder(select=range(8), mode='symmetric'),# symmetric
#                 # resize(size=(336, 336), select=[ 2, 7]),
#                 astypetoint()
#             ])
#
#         def __call__(self, spct,attr_idx):
#             return self.augment(spct,attr_idx)
#
#
#     trans = fsaug()
#
#     img_path = '/media/gserver/data/fashionai/round2/train/images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
#     img = cv2.cvtcolor(cv2.imread(img_path),cv2.color_bgr2rgb)
#     img_trans,_ = trans(img,5)
#     # img_trans2,_ = trans(img,6)
#     print img_trans.max(), img_trans.min()
#     print img_trans.dtype
#
#     plt.figure()
#     plt.subplot(221)
#     plt.imshow(img)
#
#     plt.subplot(222)
#     plt.imshow(img_trans)
#
#     # plt.subplot(223)
#     # plt.imshow(img_trans2)
#     # plt.imshow(img_trans2)
#     plt.show()

factory

factory里面主要定义了一些学习率,损失函数,优化器等之类的。

Python卷积神经网络图片分类框架详解分析

models

models中主要定义了常见的分类模型。

Python卷积神经网络图片分类框架详解分析

train.py

import os
from sklearn.model_selection import kfold
from torchvision import transforms
import torch.utils.data
from dataloader.data import traindataset,train_transform,val_transform,get_anno
from factory.loss import *
from models.model import model
from config import config
import numpy as np
from utils import utils
from factory.labelsmoothing import lsr


def train(model_type, prefix):
    # df -> numpy.array()形式
    data = get_anno(config.train_anno_path, config.train_data_path)
    # 5折交叉验证
    skf = kfold(n_splits=config.k, random_state=233, shuffle=true)

    for flod_idx, (train_indices, val_indices) in enumerate(skf.split(data)):
        train_loader = torch.utils.data.dataloader(
            traindataset(data[train_indices],
                         train_transform),
            batch_size=config.batch_size, shuffle=true, num_workers=config.num_workers, pin_memory=true
        )

        val_loader = torch.utils.data.dataloader(
            traindataset(data[val_indices],
                         val_transform),
            batch_size=config.batch_size, shuffle=false, num_workers=config.num_workers, pin_memory=true
        )

        #criterion = focalloss(0.5)
        criterion = lsr()
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = model(model_type, config.num_classes, criterion, device=device, prefix=prefix, suffix=str(flod_idx))

        for epoch in range(config.epochs):
            print('epoch: ', epoch)

            model.fit(train_loader)
            model.validate(val_loader)


if __name__ == '__main__':
    model_type_list = [config.model_name]
    for model_type in model_type_list:
        train(model_type, "resize")


小结

本次主要给出一个图片分类的框架,方便快速的切换模型。
那下回见!!!欢迎大家多多点赞评论呀!!!

Python卷积神经网络图片分类框架详解分析

到此这篇关于python卷积神经网络图片分类框架详解分析的文章就介绍到这了,更多相关python 卷积神经网络内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!