CTF:HITB 2015加密解密部分Write-up
程序员文章站
2022-06-23 11:50:36
介绍
加密类300分这道挑战题目是有关于RSA生成的质数p和q。我们现目前获得了一份RSA加密过的邮件mail.msg,以及隐藏有公钥的证书hitbctf.crt。所有文件会...
介绍
加密类300分这道挑战题目是有关于RSA生成的质数p和q。我们现目前获得了一份RSA加密过的邮件mail.msg,以及隐藏有公钥的证书hitbctf.crt。所有文件会在文尾分享!
RSA参数结构
模N是由第一个质数P随机选择,第二个质数是由以下方式构成:
k是一个正整数,q是一个质数,e是一个公用的指数且还是一个质数。
下面的代码是由Python实现:
def gen_rsa_parameters(): r = os.urandom(63) e = int(r.encode('hex'), 16) e = next_prime(e) r = os.urandom(64) p = int(r.encode('hex'), 16) p = next_prime(p) q = (p*modinv(p-1, e)%e) while not is_prime(q): q += e N = p*q phi = (p-1)*(q-1) d = modinv(e,phi) return N,e,d,p,q
攻击假想
令N′=N mod e,我们可以得到:
由于方程中存在α,所以我们引入p−1来替换
现在我们获得了一个取决于p的二次方程。
令X = p−1并假设N′−2位偶数且N′−2 = 2b
通过使用二次剩余[百度百科,*中文,*英文],我们确定并找到了解决方案。我们还可以使用SAGE以及sqrt()函数:
Np = N % e b = (Np - 2) / 2 p = Mod(pow(b, 2) - 1, e).sqrt() + b + 1
我们获得的是p mod e而不是p!
我尝试增加一些次方来找到p,但是p和 p mod e之间的距离实在太大了。
所以我们必须放弃这条道,选择另外的方法了。
通过了解p mod e我们还可以计算α
拥有了α和p mod e我们就可以通过递增e直到(pα mod e)+k⋅e为质数且能整除N。
我们假设N′−2为偶数(所以N′必须是偶数),如果在证书中N′为偶数那么这一切猜想也就成立了。
实际攻击
首先我们从证书中提取模N和公钥e:
openssl x509 -in hitbctf.crt -text -noout Certificate: Data: Version: 1 (0x0) Serial Number: 18379438180976429416 (0xff10e1a5ac5a0968) Signature Algorithm: sha1WithRSAEncryption Issuer: C=NL, ST=Noord-Holland, L=Amsterdam, O=HITB, OU=CTF Validity Not Before: May 24 09:58:26 2015 GMT Not After : May 23 09:58:26 2016 GMT Subject: C=NL, ST=Noord-Holland, L=Amsterdam, O=HITB, OU=CTF Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (1024 bit) Modulus: 00:e6:eb:89:c1:8d:49:c9:a2:02:2b:e0:b4:65:14: 6e:0f:90:45:1e:a3:4c:6b:60:56:00:4e:bd:15:59: 55:b1:35:96:c2:d6:83:ad:2f:23:6b:0b:2c:0e:0b: 88:83:b5:d6:cb:8a:0b:4f:f9:b7:eb:64:8c:95:2b: 6b:ef:5a:6f:04:f5:64:17:f5:1c:a9:14:d9:ea:73: e7:dd:c5:f2:0d:ce:c3:9c:e8:4b:72:2a:0c:f3:d8: 5e:80:ce:78:64:63:e1:44:f6:1d:b5:9c:cf:45:ff: 0e:d3:7f:d0:ce:bd:37:a5:8d:8a:4b:08:33:9e:a3: 2c:bc:ab:61:64:03:fd:2c:c5 Exponent: 69:60:2d:93:8a:81:5f:14:cf:9f:b8:36:c2:e0:4d: 4d:de:82:ba:fc:8d:56:c2:6d:8c:89:ef:3c:40:69: 5d:d5:d4:ef:a7:36:36:43:15:14:95:f3:8c:bf:24: ae:94:30:92:40:79:12:00:1b:17:f5:53:33:9e:92: 70:70:49 Signature Algorithm: sha1WithRSAEncryption 17:2b:ea:be:90:ad:98:f2:2b:ff:f5:61:d3:ea:af:fb:35:3a: 67:10:91:13:db:60:55:d9:09:8b:c2:1a:cf:6b:c6:1f:f2:10: 7a:d1:7b:9d:ff:10:f2:f2:c0:a9:f5:aa:2e:09:93:40:88:92: 7d:98:ff:e1:cb:dc:db:35:8d:e0:4b:21:99:76:bf:db:04:a2: 62:a4:18:4e:fc:bb:a7:53:be:6a:a1:ef:ec:15:86:c1:f1:1e: 87:6a:e9:af:fe:d1:08:eb:de:22:28:c4:5e:be:f1:41:0a:ca: cf:cf:da:63:b1:c1:56:e8:0c:8e:56:7f:08:94:0d:2b:2a:08:
N = 162157588231432175750266419709084494256738149198416702818838192688585199555839792754739411546929869488574731499231574687207152393171517768019327338646577588312972543620665360591059281057979460340279244616489314862289312195704820435867259965443285749719682327313893490163672147378911558526315013166594183212229
e = 215584882345398898379387706359713309034898391467668952244901790414655161931455822669631548838317075220811407344210520390992334648372016602816069805 30249
SAGE:
sage: Np = N % e sage: b = (Np - 2) / 2sage: pp = int(Mod(pow(b, 2) - 1, e).sqrt()) + b + 1sage: alpha = inverse_mod(int(X), int(e)) sage: q = (pp * alpha) % e sage: while not is_prime(q) and N % q != 0: ....: q += e sage: p = N / q sage: p13317713478157317654574552532079837937895228108820477140030796245493222349714497856652987583926206280627498615972491072112647669795345566943409669535038641sage: q12176083266650126897170100375931110708350668494730113414987801764299563774952801449439933220072280766145748279998832962142839152786620322097065894585706069rsatool.py:
#!/usr/bin/env python2 import base64, fractions, optparse, random import gmpy from pyasn1.codec.der import encoder from pyasn1.type.univ import * PEM_TEMPLATE = '-----BEGIN RSA PRIVATE KEY-----\n%s-----END RSA PRIVATE KEY-----\n' DEFAULT_EXP = 65537 def factor_modulus(n, d, e): """ Efficiently recover non-trivial factors of n See: Handbook of Applied Cryptography 8.2.2 Security of RSA -> (i) Relation to factoring (p.287) https://www.cacr.math.uwaterloo.ca/hac/ """ t = (e * d - 1) s = 0 while True: quotient, remainder = pmod(t, 2) if remainder != 0: break s += 1 t = quotient found = False while not found: i = 1 a = random.randint(1,n-1) while i <= s and not found: c1 = pow(a, pow(2, i-1, n) * t, n) c2 = pow(a, pow(2, i, n) * t, n) found = c1 != 1 and c1 != (-1 % n) and c2 == 1 i += 1 p = fractions.gcd(c1-1, n) q = (n / p) return p, q class RSA: def __init__(self, p=None, q=None, n=None, d=None, e=DEFAULT_EXP): """ Initialize RSA instance using primes (p, q) or modulus and private exponent (n, d) """ self.e = e if p and q: assert gmpy.is_prime(p), 'p is not prime' assert gmpy.is_prime(q), 'q is not prime' self.p = p self.q = q elif n and d: self.p, self.q = factor_modulus(n, d, e) else: raise ArgumentError('Either (p, q) or (n, d) must be provided') self._calc_values() def _calc_values(self): self.n = self.p * self.q phi = (self.p - 1) * (self.q - 1) self.d = gmpy.invert(self.e, phi) # CRT-RSA precomputation self.dP = self.d % (self.p - 1) self.dQ = self.d % (self.q - 1) self.qInv = gmpy.invert(self.q, self.p) def to_pem(self): """ Return OpenSSL-compatible PEM encoded key """ return PEM_TEMPLATE % base64.encodestring(self.to_der()) def to_der(self): """ Return parameters as OpenSSL compatible DER encoded key """ seq = Sequence() for x in [0, self.n, self.e, self.d, self.p, self.q, self.dP, self.dQ, self.qInv]: seq.setComponentByPosition(len(seq), Integer(x)) return encoder.encode(seq) def dump(self, verbose): vars = ['n', 'e', 'd', 'p', 'q'] if verbose: vars += ['dP', 'dQ', 'qInv'] for v in vars: self._dumpvar(v) def _dumpvar(self, var): val = getattr(self, var) parts = lambda s, l: '\n'.join([s[i:i+l] for i in xrange(0, len(s), l)]) if len(str(val)) <= 40: print '%s = %d (%#x)\n' % (var, val, val) else: print '%s =' % var print parts('%x' % val, 80) + '\n' if __name__ == '__main__': parser = optparse.OptionParser() parser.add_option('-p', dest='p', help='prime', type='int') parser.add_option('-q', dest='q', help='prime', type='int') parser.add_option('-n', dest='n', help='modulus', type='int') parser.add_option('-d', dest='d', help='private exponent', type='int') parser.add_option('-e', dest='e', help='public exponent (default: %d)' % DEFAULT_EXP, type='int', default=DEFAULT_EXP) parser.add_option('-o', dest='filename', help='output filename') parser.add_option('-f', dest='format', help='output format (DER, PEM) (default: PEM)', type='choice', choices=['DER', 'PEM'], default='PEM') parser.add_option('-v', dest='verbose', help='also display CRT-RSA representation', action='store_true', default=False) try: (options, args) = parser.parse_args() if options.p and options.q: print 'Using (p, q) to initialise RSA instance\n' rsa = RSA(p=options.p, q=options.q, e=options.e) elif options.n and options.d: print 'Using (n, d) to initialise RSA instance\n' rsa = RSA(n=options.n, d=options.d, e=options.e) else: parser.print_help() parser.error('Either (p, q) or (n, d) needs to be specified') rsa.dump(options.verbose) if options.filename: print 'Saving %s as %s' % (options.format, options.filename) if options.format == 'PEM': data = rsa.to_pem() elif options.format == 'DER': data = rsa.to_der() fp = open(options.filename, 'wb') fp.write(data) fp.close() except optparse.OptionValueError, e: parser.print_help() parser.error(e.msg)接着使用rsatool.py生成一个私钥:
$ ./rsatools.py -o private.pem \ -e 21558488234539889837938770635971330903489839146766895224490179041465516193145582266963154883831707522081140734421052039099233464837201660281606980530249 \ -p 13317713478157317654574552532079837937895228108820477140030796245493222349714497856652987583926206280627498615972491072112647669795345566943409669535038641 \ -q 12176083266650126897170100375931110708350668494730113414987801764299563774952801449439933220072280766145748279998832962142839152786620322097065894585706069然后解密信息:
openssl smime -decrypt -in mail.msg -inkey private.pem hitb{0b21cc2025534dbd2965390d2bcef45d}链接:https://pan.baidu.com/s/1kTAjeHT 密码:iy4v
上一篇: 当然要管