Python光学仿真学习Gauss高斯光束在空间中的分布
程序员文章站
2022-06-23 11:06:44
目录gauss光束强度的表达式为如图所示左上图和左下图表示激光传输过程中的其束腰半径的变化情况;右图则表示高斯光束某一横截面处激光的能量分布。绘制代码如下import matplotlib.pyplo...
gauss光束强度的表达式为
如图所示
左上图和左下图表示激光传输过程中的其束腰半径的变化情况;右图则表示高斯光束某一横截面处激光的能量分布。
绘制代码如下
import matplotlib.pyplot as plt import numpy as np def setlabel(ax,*args): ax.set_xlabel(args[0]) ax.set_ylabel(args[1]) if len(args)==3: ax.set_zlabel(args[2]) def drawgauss(w0=1,dwave=1.064): # 轴向坐标 z = np.linspace(-10,10,1000).reshape(1000,1) # z处光斑半径 w = np.sqrt(w0**2+z**2*dwave**2/np.pi**2/w0**2) theta = np.linspace(0,np.pi*2,150).reshape(1,150) x = w*np.cos(theta) y = w*np.sin(theta) fig = plt.figure() # 三维的高斯光束等功率密度面变化图 ax1 = fig.add_subplot(221,projection='3d') ax1.plot_surface(z,x,y)#,cmap=plt.get_cmap('rainbow')) ax1.set_title("waist shape changed by propagation") setlabel(ax1,"z","x","y") # 二维的高斯光束半径变化图 ax3 = fig.add_subplot(223) ax3.plot(z,w,linewidth=1) ax3.plot(z,-w,linewidth=0.2) ax3.plot([z[0],z[-1]],[0,0],linewidth=0.5,linestyle=":") ax3.set_title("waist value changed by propagation") setlabel(ax3,"z","w") # gauss光束在束腰处的切片 x,y = np.meshgrid(np.linspace(-5,5,100),np.linspace(-5,5,100)) psi = np.exp(-(x**2+y**2)/w0**2)/w0 ax2 = fig.add_subplot(222,projection='3d') ax2.plot_surface(x,y,psi) ax2.set_title("intensity distribution on waist0") setlabel(ax2,"x","y","instensity") # gauss光束在束腰处的径向切片 r = np.linspace(-5,5,200) psi = np.exp(-r**2/w0**2)/w0 ax4 = fig.add_subplot(224) ax4.plot(r,psi) ax4.set_title("intensity distribution on waist0") setlabel(ax4,"r","instensity") plt.show()
如果沿着z轴方向,在不同的位置处对gauss光束进行切片处理,则不同位置处径向功率分布如图所示
实现代码如下
import matplotlib.animation as animation def gaussgif1d(w0=1,dwave=1.064): zaxis = np.arange(100) # 轴向坐标 z = np.linspace(0,10,100) # z处的束腰半径 w = np.sqrt(w0**2+z**2*dwave**2/np.pi**2/w0**2) x = np.linspace(-10,10,500) fig = plt.figure() ax = fig.gca(xlim=(-5,5),ylim=(0,1)) ax.grid() line, = ax.plot([],[]) time_text = ax.text(0.1,0.9,'',transform=ax.transaxes) # 初始化图像 def init(): line.set_data([],[]) time_text.set_text("") return line, time_text # 图像迭代 def animate(i): wi = w[i] psi = np.exp(-x**2/wi**2)/wi line.set_data(x,psi) time_text.set_text("z="+str(z[i])) return line, time_text ani = animation.funcanimation(fig, animate, zaxis, interval=200, init_func=init) ani.save('gauss.gif',writer='imagemagick') plt.show()
以上就是python光学仿真学习gauss高斯光束在空间中的分布的详细内容,更多关于python光学仿真gauss高斯光束空间分布的资料请关注其它相关文章!