pytorch交叉熵损失函数的weight参数的使用
首先
必须将权重也转为tensor的cuda格式;
然后
将该class_weight作为交叉熵函数对应参数的输入值。
补充:关于pytorch的crossentropyloss的weight参数
首先这个weight参数比想象中的要考虑的多
你可以试试下面代码
这里的手动计算是:
loss1 = 0 + ln(e0 + e0 + e0) = 1.098
loss2 = 0 + ln(e1 + e0 + e1) = 1.86
求平均 = (loss1 *1 + loss2 *1)/ 2 = 1.4803
加权呢?
手算发现,并不是单纯的那权重相乘:
loss1 = 0 + ln(e0 + e0 + e0) = 1.098
loss2 = 0 + ln(e1 + e0 + e1) = 1.86
求平均 = (loss1 * 1 + loss2 * 2)/ 2 = 2.4113
而是
loss1 = 0 + ln(e0 + e0 + e0) = 1.098
loss2 = 0 + ln(e1 + e0 + e1) = 1.86
求平均 = (loss1 *1 + loss2 *2) / 3 = 1.6075
发现了么,加权后,除以的是权重的和,不是数目的和。
我们再验证一遍:
手算:
loss1 = 0 + ln(e0 + e0 + e0) = 1.098
loss2 = 0 + ln(e1 + e0 + e1) = 1.86
loss3 = 0 + ln(e2 + e0 + e0) = 2.2395
loss4 = -0.5 + ln(e0.5 + e0 + e0) = 0.7943
求平均 = (loss1 * 1 + loss2 * 2+loss3 * 3+loss4 * 3) / 9 = 1.5472
可能有人对loss的ce计算过程有疑问,我这里细致写写交叉熵的计算过程,就拿最后一个例子的loss4的计算说明
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。
下一篇: Flutter 构建一个常用的页面框架