欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

程序员文章站 2022-06-23 09:26:07
在第一篇博客里提过图片识别的底层.最精准的图片识别需要海量的数据磨炼.自己写的底层没有以亿为单位的数据支持其实也是个残废品. 在此介绍Microsoft的几个云服务吧.都是付费的喔.个人可以申请30天免费试用. public class FaceHelper { private const stri ......

 

在第一篇博客里提过图片识别的底层.最精准的图片识别需要海量的数据磨炼.自己写的底层没有以亿为单位的数据支持其实也是个残废品.

在此介绍Microsoft的几个云服务吧.都是付费的喔.个人可以申请30天免费试用.

public class FaceHelper
{
private const string uriBase = "https://westcentralus.api.cognitive.microsoft.com/face/v1.0/detect";
private static string subscriptionKey = string.Empty;
public FaceHelper(string Key,string imageFilePath)
{
if (!String.IsNullOrWhiteSpace(Key))
{
subscriptionKey = Key;
MakeAnalysisRequest(imageFilePath);
}
}

static async void MakeAnalysisRequest(string imageFilePath)
{
HttpClient client = new HttpClient();

client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", subscriptionKey);

string requestParameters = "returnFaceId=true&returnFaceLandmarks=false&returnFaceAttributes=age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,accessories,blur,exposure,noise";

string uri = uriBase + "?" + requestParameters;

HttpResponseMessage response;

byte[] byteData = GetImageAsByteArray(imageFilePath);

using (ByteArrayContent content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");

response = await client.PostAsync(uri, content);

string contentString = await response.Content.ReadAsStringAsync();

Console.WriteLine("\nResponse:\n");
Console.WriteLine(JsonPrettyPrint(contentString));
}
}

static byte[] GetImageAsByteArray(string imageFilePath)
{
FileStream fileStream = new FileStream(imageFilePath, FileMode.Open, FileAccess.Read);
BinaryReader binaryReader = new BinaryReader(fileStream);
return binaryReader.ReadBytes((int)fileStream.Length);
}

static string JsonPrettyPrint(string json)
{
if (string.IsNullOrEmpty(json))
return string.Empty;

json = json.Replace(Environment.NewLine, "").Replace("\t", "");

StringBuilder sb = new StringBuilder();
bool quote = false;
bool ignore = false;
int offset = 0;
int indentLength = 3;

foreach (char ch in json)
{
switch (ch)
{
case '"':
if (!ignore) quote = !quote;
break;
case '\'':
if (quote) ignore = !ignore;
break;
}

if (quote)
sb.Append(ch);
else
{
switch (ch)
{
case '{':
case '[':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', ++offset * indentLength));
break;
case '}':
case ']':
sb.Append(Environment.NewLine);
sb.Append(new string(' ', --offset * indentLength));
sb.Append(ch);
break;
case ',':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', offset * indentLength));
break;
case ':':
sb.Append(ch);
sb.Append(' ');
break;
default:
if (ch != ' ') sb.Append(ch);
break;
}
}
}

return sb.ToString().Trim();
}

}

脸识别 API.检测、识别、分析、组织和标记照片中的人脸

FaceHelper face = new FaceHelper("你的密钥",ConfigurationManager.AppSettings["Face"] );

 

Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

 

Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

返回值很多很详细.人脸在图片的那个区域。性别.有没有头发。有没有胡子。有没有眼镜都写的很清楚.在此不一一列举

以下是声音识别.分REST 和SOCKET 语音识别也分中英美法.传递的音频也要分长短.以下配置为英文识别.REST.15秒以下音频

public class VoiceHelper
{
/// <summary>
/// 识别模式
///有认可的三种模式:interactive,conversation,和dictation。识别模式根据用户如何说话来调整语音识别。为您的应用程序选择适当的识别模式。
/// </summary>
public VoiceHelper(string file,string key)
{
string url = "https://speech.platform.bing.com/speech/recognition/dictation/cognitiveservices/v1?language=en-US&format=simple";

string responseString = string.Empty;
HttpWebRequest request = null;
request = (HttpWebRequest)HttpWebRequest.Create(url);
request.SendChunked = true;
request.Accept = @"application/json;text/xml";
request.Method = "POST";
request.ProtocolVersion = HttpVersion.Version11;
request.ContentType = @"audio/wav; codec=audio/pcm; samplerate=16000";
request.Headers["Ocp-Apim-Subscription-Key"] = key;

using (FileStream fs = new FileStream(file, FileMode.Open, FileAccess.Read))
{

byte[] buffer = null;
int bytesRead = 0;
using (Stream requestStream = request.GetRequestStream())
{

buffer = new Byte[checked((uint)Math.Min(1024, (int)fs.Length))];
while ((bytesRead = fs.Read(buffer, 0, buffer.Length)) != 0)
{
requestStream.Write(buffer, 0, bytesRead);
}

requestStream.Flush();
}
}

using (WebResponse response = request.GetResponse())
{
Console.WriteLine(((HttpWebResponse)response).StatusCode);

using (StreamReader sr = new StreamReader(response.GetResponseStream()))
{
responseString = sr.ReadToEnd();
}

Console.WriteLine(responseString);
}


}
}

 

 

 

 

VoiceHelper voice = new VoiceHelper(@ConfigurationManager.AppSettings["Voice"], "你的密钥");

 

 Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

 

Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

 

 这个语音识别还是可以的.Displaytext就是我在音频中说的话.重复了三遍 TEST.声音很沙哑也很低沉.识别率很赞.

不过要注意只支持15秒带有PCM单声道(单声道),16 KHz的WAV文件

以下是图片识别.这个就可好玩了.我放了一个大飞机.返回的数据中.飞机蓝天都识别了

 

public class OCRHelper
{
const string subscriptionKey = "你的密钥";

const string uriBase = "https://westcentralus.api.cognitive.microsoft.com/vision/v1.0/analyze";

public OCRHelper(string file)
{
// Get the path and filename to process from the user.
Console.WriteLine("Analyze an image:");
Console.Write("Enter the path to an image you wish to analzye: ");

// Execute the REST API call.
MakeAnalysisRequest(file);

Console.WriteLine("\nPlease wait a moment for the results to appear. Then, press Enter to exit...\n");

}
/// <summary>
/// Gets the analysis of the specified image file by using the Computer Vision REST API.
/// </summary>
/// <param name="imageFilePath">The image file.</param>
static async void MakeAnalysisRequest(string imageFilePath)
{
HttpClient client = new HttpClient();

// Request headers.
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", subscriptionKey);

// Request parameters. A third optional parameter is "details".
string requestParameters = "visualFeatures=Categories,Description,Color&language=en";

// Assemble the URI for the REST API Call.
string uri = uriBase + "?" + requestParameters;

HttpResponseMessage response;

// Request body. Posts a locally stored JPEG image.
byte[] byteData = GetImageAsByteArray(imageFilePath);

using (ByteArrayContent content = new ByteArrayContent(byteData))
{
// This example uses content type "application/octet-stream".
// The other content types you can use are "application/json" and "multipart/form-data".
content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");

// Execute the REST API call.
response = await client.PostAsync(uri, content);

// Get the JSON response.
string contentString = await response.Content.ReadAsStringAsync();

// Display the JSON response.
Console.WriteLine("\nResponse:\n");
Console.WriteLine(JsonPrettyPrint(contentString));
//description.captions.text 对图片的英文描述
}
}


/// <summary>
/// Returns the contents of the specified file as a byte array.
/// </summary>
/// <param name="imageFilePath">The image file to read.</param>
/// <returns>The byte array of the image data.</returns>
static byte[] GetImageAsByteArray(string imageFilePath)
{
FileStream fileStream = new FileStream(imageFilePath, FileMode.Open, FileAccess.Read);
BinaryReader binaryReader = new BinaryReader(fileStream);
return binaryReader.ReadBytes((int)fileStream.Length);
}


/// <summary>
/// Formats the given JSON string by adding line breaks and indents.
/// </summary>
/// <param name="json">The raw JSON string to format.</param>
/// <returns>The formatted JSON string.</returns>
static string JsonPrettyPrint(string json)
{
if (string.IsNullOrEmpty(json))
return string.Empty;

json = json.Replace(Environment.NewLine, "").Replace("\t", "");

StringBuilder sb = new StringBuilder();
bool quote = false;
bool ignore = false;
int offset = 0;
int indentLength = 3;

foreach (char ch in json)
{
switch (ch)
{
case '"':
if (!ignore) quote = !quote;
break;
case '\'':
if (quote) ignore = !ignore;
break;
}

if (quote)
sb.Append(ch);
else
{
switch (ch)
{
case '{':
case '[':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', ++offset * indentLength));
break;
case '}':
case ']':
sb.Append(Environment.NewLine);
sb.Append(new string(' ', --offset * indentLength));
sb.Append(ch);
break;
case ',':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', offset * indentLength));
break;
case ':':
sb.Append(ch);
sb.Append(' ');
break;
default:
if (ch != ' ') sb.Append(ch);
break;
}
}
}

return sb.ToString().Trim();
}
}

 

 OCRHelper ocr = new OCRHelper(@"C:\Users\Administrator\Desktop\test2.png");

 下图是输入参数

 Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

 

 下面是输出参数

Microsoft.Azure:语音识别/图片识别/人脸识别/情绪识别

 

 一只大鸟在天上飘

 情绪识别的接口就不解释了.人脸识别做的比情绪识别还详细.