欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 中 function(#) (X)格式 和 (#)在Python3.*中的注意事项

程序员文章站 2022-03-11 17:33:41
python 的语法定义和c++、matlab、java 还是很有区别的。 1. 括号与函数调用 def devided_3(x): return x/...

python 的语法定义和c++、matlab、java 还是很有区别的。

1. 括号与函数调用

def devided_3(x):
   return x/3.

print(a)    #不带括号调用的结果:<function a at 0x139c756a8>
print(a(3)) #带括号调用的结果:1

不带括号时,调用的是函数在内存在的首地址; 带括号时,调用的是函数在内存区的代码块,输入参数后执行函数体。

2. 括号与类调用

class test():
  y = 'this is out of __init__()'
  def __init__(self):
    self.y = 'this is in the __init__()'
 
x = test  # x是类位置的首地址
print(x.y) # 输出类的内容:this is out of __init__()
x = test() # 类的实例化
print(x.y) # 输出类的属性:this is in the __init__() ;

3. function(#) (input)

def with_func_rtn(a):
  print("this is func with another func as return")
  print(a)
  def func(b):
    print("this is another function")
    print(b)
  return func
func(2018)(11)
>>> this is func with another func as return
  2018
  this is another function
  11

其实,这种情况最常用在卷积神经网络中:

def model(input_shape):
  # define the input placeholder as a tensor with shape input_shape.
  x_input = input(input_shape)
  # zero-padding: pads the border of x_input with zeroes
  x = zeropadding2d((3, 3))(x_input)
  # conv -> bn -> relu block applied to x
  x = conv2d(32, (7, 7), strides = (1, 1), name = 'conv0')(x)
  x = batchnormalization(axis = 3, name = 'bn0')(x)
  x = activation('relu')(x)
  # maxpool
  x = maxpooling2d((2, 2), name='max_pool')(x)
  # flatten x (means convert it to a vector) + fullyconnected
  x = flatten()(x)
  x = dense(1, activation='sigmoid', name='fc')(x)
  # create model. this creates your keras model instance, you'll use this instance to train/test the model.
  model = model(inputs = x_input, outputs = x, name='happymodel')
  return model

总结

以上所述是小编给大家介绍的python 中 function(#) (x)格式 和 (#)在python3.*中的注意,希望对大家有所帮助