欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

整型最大值+1问题

程序员文章站 2022-06-22 18:25:12
...
      先看一个问题:i + 1 < i 成立吗?答案是肯定的。下面我们用代码来证明:
 @Test
	public void test(){
		int i = Integer.MAX_VALUE;  
     System.err.println("i="+i+",i+1="+(i+1)+" result:"+((i+1)<i));  
	}

输出结果如下:
i=2147483647,i+1=-2147483648 result:true
    为什么会这样呢?
    这是因为整数在内存中使用的是补码的形式表示,最高位是符号位,0表示正数,1表示负数:
例如一个8位的整数
正数的补码为:这个正数的二进制码,例如5:0000 0101
负数的补码为:这个负数的绝对值的二进制码,取反加1,例如-5:1111 1011。过程如下:
    1.取绝对值:5
    2.取二进制码:0000 0101
    3.二进制码取反:1111 1010
    4. 加1:1111 1011
反之,通过这个数的补码也能得到这个数,这里就不再赘述。
    然后我们来看看整型最大值+1的问题。上面代码用的是int类型,同理byte类型也一样:
   byte b = 127;
   b = (byte) (b + 1);
最后b的值是多少?分析:
    首先普及一下:一个字节用8个占位符,int为4个字节,所以是32位。byte则为8位。
   127的二进制为: 0111 1111
   127+1则为:0111 1111 + 1 = 1000 0000
    计算1000 0000的值(与上面取补码的反向步骤)
   1.减1:0111 1111
   2.二进制码取反:1000 0000
   3.二进制转十进制:128
   4.符号位判定正负:-128

    由以上分析,同理可推 i - 1 > i 成立,在此不再赘述。
原文永久地址:http://jsonliangyoujun.iteye.com/blog/2356997