欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

统计算法_概率基础

程序员文章站 2022-06-22 11:07:24
说概率前复习下历史函数create_rand_list() #创建一个含有指定数量元素的listsum_fun() #累加len_fun() #统计个数multiply_fun() #累乘sum_mean_fun() #算数平均数sum_mean_rate() #算数平均数计算回报median_fu ......

说概率前复习下历史函数
create_rand_list() #创建一个含有指定数量元素的list
sum_fun() #累加
len_fun() #统计个数
multiply_fun() #累乘
sum_mean_fun() #算数平均数
sum_mean_rate() #算数平均数计算回报
median_fun() #中位数
modes_fun() #众数
ext_minus_fun() #极差
geom_mean_fun() #几何平均数
geom_mean_rate() #几何平均回报

var_fun() #方差-样本S^2
covar_fun() #协方差(标准差)-样本S
trans_coef_fun() #变异系数CV
pearson_fun() #相关系数-样本r
---------------以上是旧的------------------------------------------------------------------------
---------------以下是新的------------------------------------------------------------------------
概率这块整个给我看了个懵逼,后面的代码都是按照我自己理解写的,如果有错误,欢迎指正
另外说明的是概率是很精细的事情,所以浮点型的数字会比较多,而且小数位数十分精确,除特殊情况,我就四舍五入截取到小数点后4位
简单事件,就是只有一个特征的事件,所有可能事件的集合就是样本空间,举个例子
有两袋子花生米,第一个袋子有32个花生米,其中有3个坏的,第二个袋子有17个花生米,其中有5个坏的,这个例子的样本空间就是下面这样。我想说,要是我选了B袋子我一定诅咒卖花生的老板吃方便面没有调料
袋子|是否坏的|花生米个数
A   |0       |3
A   |1       |29
B   |0       |5
B   |1       |12
为了方便起见,是True用0表示,否false用1表示
1、简单边际概率,记做P(A)
这个容易理解,比如计算坏花生米的出现率,这个简单,就不单独写代码了
P(A) = 坏花生米/总数 = 8/49 = 0.1633

2、联合概率

既然是联合了,就需要两个事件,记为P(A且B),∩这玩意就是且
就是A事件和B事件联合成同一个事件的概率,从A袋子吃出一个坏花生米的概率就是联合概率,事件A是坏花生米,事件B是A袋子
这个比较有分歧,比较广泛使用的是
P(A∩B) = 3/49 = 0.0612
另一种就是
P(A∩B) = 3/32*0.5 = 0.0517
我个人比较同意第一种,但是受到其他事件的影响比较大,考虑如果B袋子有10000个花生,坏花生数不变,结果会有很大差异
那么函数就有了

def unite_rate_fun(condition_count,all_count):
  p_a_with_b = condition_count * all_count
  return p_a_with_b

3、条件概率
一个事件已发生的情况下,得到另一个事件的发生概率,比较文言的说法是,给定事件B,事件A的发生概率,当然也可以反过来
P(A|B) = P(A∩B)/P(B)
反过来
P(B|A) = P(A∩B)/P(A)
还是这个例子,现在已知B事件是从A袋子取,那么P(B) = 32/49
P(A|B) = (3/49)/(32/49) = 3/32 = 0.0937
这个函数就是

def condition_rate_fun(p_a_with_b,p_b):
  p_a_from_b = p_a_with_b / p_b
  return p_a_from_b

 

下面的内容用花生米的例子就不合适了,换个学校的事
一个班英语考试各分数的比例
分数|占比
20  |0.1
40  |0.1
60  |0.3
80  |0.4
100 |0.1

4、随机变量期望值
和算数平均数差不多,实际结果不应与这个数有太多偏差
μ = E(X) = NΣXiP(Xi)
E(X) = 20 * 0.1 + 40 * 0.1 + 60 * 0.3 + 80 * 0.4 + 100 * 0.1 = 66

def e_x(count_list,rate_list):
  e_len = len_fun(count_list)
  if e_len == len_fun(rate_list):
    e_list = [count_list[i] * rate_list[i] for i in range(e_len)]
    e_num = sum_fun(e_list)
  else: return None
  return e_num

5、随机变量方差
和样本方差功能一样,不多说了
σ^2 = NΣ[Xi-E(X)]^2P(Xi)

def var_rand_fun(count_list,rate_list):
  e_num = e_x(count_list,rate_list)
  var_len = len_fun(count_list)
  if var_len == len_fun(rate_list):
    var_list = [(count_list[i] - e_num) * rate_list[i] for i in range(var_len)]
    var_num = sum_fun(var_list)
  else: return None
  return var_num

6、随机变量协方差
函数简单,套用协方差函数即可

def covar_rand_fun(count_list,rate_list):
  var_rand_num = var_rand_fun(count_list,rate_list)
  covar_num = var_rand_num ** 0.5
  return covar_num

7、联合协方差
σxy = NΣ[Xi-E(X)][Yi-E(Y)]P(XiYi)

def covar_rand_xy_fun(x_count_list,y_count_list,xy_rate_list):
  e_x_num = (x_count_list,xy_rate_list)
  e_y_num = (y_count_list,xy_rate_list)
  covar_len = len_fun(x_count_list)
  if covar_len == len_fun(y_count_list) and covar_len == len_fun(xy_rate_list):
    covar_rand_xy_list = [(x_count_list[i] - e_x_num) * (y_count_list[i] - e_y_num) * xy_rate_list[i] for i in range(covar_len)]
    covar_rand_xy_num = sum_fun(covar_rand_xy_list)
  else: return None
  return covar_rand_xy_num

8、组合期望回报
用最小的风险能获得的最大回报
E(P) = wE(X) + (1 - w)E(Y)
w是投资资产x的比例

def e_p(x_count_list,y_count_list,xy_rate_list):
  e_x_num = e_x(x_count_list,xy_rate_list)
  e_y_num = e_x(y_count_list,xy_rate_list)
  w = sum_fun(x_count_list) / (sum_fun(x_count_list) + sum_fun(y_count_list))
  e_p_num = w * e_x_num + (1 - w) * e_y_num
  return e_p_num

9、投资组合风险
这个没有搞懂是做什么的,应该是期望回报的偏差值吧
σ(p) = [w^2σ(x)^2 + (1 - w)^2σ(y)^2 + 2w(1 - w)σ(xy)]^0.5

def var_p_fun(x_count_list,y_count_list,xy_rate_list):
  w = sum_fun(x_count_list) / (sum_fun(x_count_list) + sum_fun(y_count_list))
  var_rand_x_num = var_rand_fun(x_count_list,xy_rate_list)
  var_rand_y_num = var_rand_fun(y_count_list,xy_rate_list)
  covar_rand_xy_num = covar_rand_xy_fun(x_count_list,y_count_list,xy_rate_list)
  var_p_num = (w * w * var_rand_y_num + (1 - w) * (1 - w) * var_rand_y_num + 2 * w * (1 - w) * covar_rand_xy_num) ** 0.5
  return var_p_num