celery详解
celery详解
1、背景
由于从事区块链钱包相关开发,对于区块链链上资源需要频繁的进行检查同步,在flask项目中,对于celery这个异步任务执行工具,使用的频率算是相当的高,今天,我就来简单总结一下celery的概念和使用方法。
2、形象比喻
celery是一个异步任务的调度工具,是distributed task queue,分布式任务队列,分布式决定了可以有多个worker的存在,队列表示其是异步操作,即存在一个产生任务提出需求的工头,和一群等着被分配工作的码农。
在python中定义celery的时候,我们要引入broker,中文翻译过来就是"中间人"的意思,在这里broker起到一个中间人的角色,在工头提出任务的时候,把所有的任务放到broker里面,在broker的另一头,一群码农等着取出一个个任务准备着手做。
这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的,所以我们要引入backend来保存每次任务的结果。这个backend有点像我们的broker,也是存储信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到backend,这样我们取回结果,便可以知道有多少任务执行失败了。
3、celery具体介绍
3.1 broker
broker是一个消息传输的中间件,它是用来存储生产出来的各种待执行任务的。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,进行程序执行,broker可以看成是一个消息队列,其中broker的中文意思是经纪人,用来发送和接受信息。这个broker有几个方案可供选择:rabbitmq(消息队列),redis(缓存数据库),数据库(不推荐),等等。
3.2 backend
通常程序发送的消息,发完就完了,可能都不知道对方什么时候接受了,为此,celery实现了一个backend,用于存储这些消息以及celery执行的一些消息和结果,backend是在celery的配置中的一个配置项celery_result_backend,作用是保存结果和状态,如果你需要跟踪任务的状态,那么需要设置这一项,可以是database backend,也可以是cache backend。
对于brokers,官方推荐是rabbitmq和redis,至于backend,就是数据库,为了简单可以都使用redis。在我的项目中,都是使用redis。
4、使用
4.1 celery架构
celery的架构由消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)三部分组成。
- 消息中间件
celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成,包括rabbitmq,redis,mongodb等
- 任务执行单元
worker是celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
- 任务结果存储
task result store用来存储worker执行的任务的结果,celery支持以不同方式存储任务的结果,包括amqp,redis,memcached,mongodb,sqlalchemy,django等
4.2 安装redis+celery
安装redis,它的安装比较简单:
~$ pip install redis
然后进行配置,一般都在项目的config.py文件里配置:
celery_broker_url = "redis://localhost:6379/0"
url的格式为:redis://:password@hostname:port/db_number
url scheme后的所有字段都是可选的,并且默认为localhost的6379端口,也就是redis的默认端口,使用数据库0。
安装celery:
~$ pip install celery
4.3 使用celery
使用celery包含三个方面:1,定义任务函数 2,运行celery服务 3,客户应用程序的调用
创建一个文件tasks.py输入下列代码:
from celery import celery broker = "redis://localhost:6379/0" backend = "redis://localhost:6379/1" app = celery("tasks", broker=broker, backend=backend) @app.task def add(x, y) return x + y
上述代码导入了celery,然后创建了celery实例app,实例化的过程中指定了任务名tasks(和文件名一致),传入了broker和backend。然后创建了一个任务函数add。下面启动
celery服务,在当前命令行终端运行:
~$ celery -a tasks worker
目录结构(celery -a tasks worker --loglevel=info这条命令当前工作目录必须和tasks.py所在的目录相同,即进入tasks.py所在目录执行这条命令)
调用delay函数即可启动add这个任务,这个函数的效果是发送一条消息到broker中去,这个消息包括要执行的函数,函数的参数以及其他消息,具体的可以看celery官方文档。这个时候worker会等待broker中的消息,一旦收到消息就会立刻执行消息。
注意:如果把返回值赋值给一个变量,那么原来的应用程序也会被阻塞,需要等待异步任务返回的结果,因此,实际使用中,不需要把结果赋值。
使用配置文件
celery的配置比较多,可以在官方配置文档:http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。
4.4 健壮性
上述的使用是简单的配置,下面介绍一个更健壮的方式来使用celery。首先创建一个python包,celery服务,姑且命名为proj。目录文件如下:
|- proj |-- __init__.py |-- celery.py # 创建celery实例 |-- config.py # 配置文件 |-- tasks.py # 任务函数
首先是 celery.py
from __future__ import absolute_import from celery import celery app = celery("proj", include=["proj.tasks"]) app.config_from_object("proj.config") if __name__ == "__main__": app.start()
这一次创建app,并没有直接指定broker和backend。而是在配置文件中。
然后是 config.py
from __future__ import absolute_import broker_url = "redis://localhost:6379/0" celery_backend_url = "redis://localhost:6379/1"
最后是 tasks.py
from __future__ import absolute_import from proj.celery import app @app.task def add(x, y): return x + y
使用方法也很简单,在proj的同一级目录执行celery:
celery -a proj worker -l info
现在使用任务也很简单,直接在客户端代码调用proj.tasks里的函数即可。
4.5 定时任务
scheduler(定时任务,周期性任务)
一种常见的需求是每隔一段时间执行一个任务
在celery中执行定时任务非常简单,只需要设置celery对象的celerybeat_schedule属性即可。
配置如下 config.py
from __future__ import absolute_import broker_url = "redis://localhost:6379/0" celery_backend_url = "redis://localhost:6379/1" celery_timezone = "asia/shanghai" from datetime import timedelta celerybeat_schedule = { 'add-every-30-seconds':{ 'task':'proj.tasks.add', 'schedule':timedelta(seconds=30), 'args':(16, 16) }, }
注意配置文件需要指定时区,这段代码表示每隔30秒执行add函数,一旦使用了scheduler,启动celery需要加上-b参数。
celery -a proj worker -b -l info
对于celery的介绍就到这里了,欢迎交流技术难点。
上一篇: 一个自己实现的Vector 完善版本