机器学习第6章决策树
程序员文章站
2022-06-22 08:47:51
参考:作者的 "Jupyter Notebook" "Chapter 6 – Decision Trees" 1. 保存图片 决策树训练和可视化 2. 要了解决策树,让我们先构建一个决策树,看看它是如何做出预测的。下面的代码在鸢尾花数据集(见第4章)上训练了一个DecisionTreeClassif ......
参考:作者的jupyter notebook
chapter 6 – decision trees
- 保存图片
from __future__ import division, print_function, unicode_literals import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import os np.random.seed(42) mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # where to save the figures project_root_dir = "images" chapter_id = "decision_trees" def save_fig(fig_id, tight_layout=true): path = os.path.join(project_root_dir, chapter_id, fig_id + ".png") print("saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format='png', dpi=600)
决策树训练和可视化
-
要了解决策树,让我们先构建一个决策树,看看它是如何做出预测的。下面的代码在鸢尾花数据集(见第4章)上训练了一个decisiontreeclassifier:
from sklearn.datasets import load_iris from sklearn.tree import decisiontreeclassifier iris = load_iris() x = iris.data[:, 2:] # petal length and width y = iris.target tree_clf = decisiontreeclassifier(max_depth=2, random_state=42) tree_clf.fit(x, y) #print(tree_clf.fit(x, y))
-
要将决策树可视化,首先,使用export_graphviz()方法输出一个图形定义文件,命名为iris_tree.dot:
from sklearn.tree import export_graphviz export_graphviz( tree_clf, out_file=image_path("iris_tree.dot"), feature_names=iris.feature_names[2:], class_names=iris.target_names, rounded=true, filled=true ) #下面这行命令将.dot文件转换为.png图像文件: #$ dot -tpng iris_tree.dot -o iris_tree.png
做出预测
``` from matplotlib.colors import listedcolormap def plot_decision_boundary(clf, x, y, axes=[0, 7.5, 0, 3], iris=true, legend=false, plot_training=true): x1s = np.linspace(axes[0], axes[1], 100) x2s = np.linspace(axes[2], axes[3], 100) x1, x2 = np.meshgrid(x1s, x2s) x_new = np.c_[x1.ravel(), x2.ravel()] y_pred = clf.predict(x_new).reshape(x1.shape) custom_cmap = listedcolormap(['#fafab0','#9898ff','#a0faa0']) plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap) if not iris: custom_cmap2 = listedcolormap(['#7d7d58','#4c4c7f','#507d50']) plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8) if plot_training: plt.plot(x[:, 0][y==0], x[:, 1][y==0], "yo", label="iris-setosa") plt.plot(x[:, 0][y==1], x[:, 1][y==1], "bs", label="iris-versicolor") plt.plot(x[:, 0][y==2], x[:, 1][y==2], "g^", label="iris-virginica") plt.axis(axes) if iris: plt.xlabel("petal length", fontsize=14) plt.ylabel("petal width", fontsize=14) else: plt.xlabel(r"$x_1$", fontsize=18) plt.ylabel(r"$x_2$", fontsize=18, rotation=0) if legend: plt.legend(loc="lower right", fontsize=14) plt.figure(figsize=(8, 4)) plot_decision_boundary(tree_clf, x, y) plt.plot([2.45, 2.45], [0, 3], "k-", linewidth=2) plt.plot([2.45, 7.5], [1.75, 1.75], "k--", linewidth=2) plt.plot([4.95, 4.95], [0, 1.75], "k:", linewidth=2) plt.plot([4.85, 4.85], [1.75, 3], "k:", linewidth=2) plt.text(1.40, 1.0, "depth=0", fontsize=15) plt.text(3.2, 1.80, "depth=1", fontsize=13) plt.text(4.05, 0.5, "(depth=2)", fontsize=11) save_fig("decision_tree_decision_boundaries_plot") plt.show() ```
估算类别概率
- 决策树同样可以估算某个实例属于特定类别k的概率
#print(tree_clf.predict_proba([[5, 1.5]])) #print(tree_clf.predict([[5, 1.5]]))0
cart训练算法
scikit-learn使用的是分类与回归树(classification and regression tree,简称cart)算法来训练决策树(也叫作“生长”树)。
计算复杂度
基尼不纯度还是信息熵
正则化超参数
``` from sklearn.datasets import make_moons xm, ym = make_moons(n_samples=100, noise=0.25, random_state=53) deep_tree_clf1 = decisiontreeclassifier(random_state=42) deep_tree_clf2 = decisiontreeclassifier(min_samples_leaf=4, random_state=42) deep_tree_clf1.fit(xm, ym) deep_tree_clf2.fit(xm, ym) plt.figure(figsize=(11, 4)) plt.subplot(121) plot_decision_boundary(deep_tree_clf1, xm, ym, axes=[-1.5, 2.5, -1, 1.5], iris=false) plt.title("no restrictions", fontsize=16) plt.subplot(122) plot_decision_boundary(deep_tree_clf2, xm, ym, axes=[-1.5, 2.5, -1, 1.5], iris=false) plt.title("min_samples_leaf = {}".format(deep_tree_clf2.min_samples_leaf), fontsize=14) save_fig("min_samples_leaf_plot正则化超参数") plt.show() ```
左图使用默认参数(即无约束)来训练决策树,右图的决策树应用min_samples_leaf=4进行训练。很明显,左图模型过度拟合,右图的泛化效果更佳。
回归
-
决策树也可以执行回归任务。我们用scikit_learn的decisiontreeregressor来构建一个回归树,在一个带噪声的二次数据集上进行训练,其中max_depth=2:
np.random.seed(42) m = 200 x = np.random.rand(m, 1) y = 4 * (x - 0.5) ** 2 y = y + np.random.randn(m, 1) / 10 from sklearn.tree import decisiontreeregressor tree_reg = decisiontreeregressor(max_depth=2, random_state=42) tree_reg.fit(x, y) #print(tree_reg.fit(x, y))
-
两个决策树回归模型的预测对比
from sklearn.tree import decisiontreeregressor tree_reg1 = decisiontreeregressor(random_state=42, max_depth=2) tree_reg2 = decisiontreeregressor(random_state=42, max_depth=3) tree_reg1.fit(x, y) tree_reg2.fit(x, y) def plot_regression_predictions(tree_reg, x, y, axes=[0, 1, -0.2, 1], ylabel="$y$"): x1 = np.linspace(axes[0], axes[1], 500).reshape(-1, 1) y_pred = tree_reg.predict(x1) plt.axis(axes) plt.xlabel("$x_1$", fontsize=18) if ylabel: plt.ylabel(ylabel, fontsize=18, rotation=0) plt.plot(x, y, "b.") plt.plot(x1, y_pred, "r.-", linewidth=2, label=r"$\hat{y}$") plt.figure(figsize=(11, 4)) plt.subplot(121) plot_regression_predictions(tree_reg1, x, y) for split, style in ((0.1973, "k-"), (0.0917, "k--"), (0.7718, "k--")): plt.plot([split, split], [-0.2, 1], style, linewidth=2) plt.text(0.21, 0.65, "depth=0", fontsize=15) plt.text(0.01, 0.2, "depth=1", fontsize=13) plt.text(0.65, 0.8, "depth=1", fontsize=13) plt.legend(loc="upper center", fontsize=18) plt.title("max_depth=2", fontsize=14) plt.subplot(122) plot_regression_predictions(tree_reg2, x, y, ylabel=none) for split, style in ((0.1973, "k-"), (0.0917, "k--"), (0.7718, "k--")): plt.plot([split, split], [-0.2, 1], style, linewidth=2) for split in (0.0458, 0.1298, 0.2873, 0.9040): plt.plot([split, split], [-0.2, 1], "k:", linewidth=1) plt.text(0.3, 0.5, "depth=2", fontsize=13) plt.title("max_depth=3", fontsize=14) save_fig("tree_regression_plot两个决策树回归模型的预测对比") plt.show()
不稳定性
-
对数据旋转敏感
np.random.seed(6) xs = np.random.rand(100, 2) - 0.5 ys = (xs[:, 0] > 0).astype(np.float32) * 2 angle = np.pi / 4 rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) xsr = xs.dot(rotation_matrix) tree_clf_s = decisiontreeclassifier(random_state=42) tree_clf_s.fit(xs, ys) tree_clf_sr = decisiontreeclassifier(random_state=42) tree_clf_sr.fit(xsr, ys) plt.figure(figsize=(11, 4)) plt.subplot(121) plot_decision_boundary(tree_clf_s, xs, ys, axes=[-0.7, 0.7, -0.7, 0.7], iris=false) plt.subplot(122) plot_decision_boundary(tree_clf_sr, xsr, ys, axes=[-0.7, 0.7, -0.7, 0.7], iris=false) save_fig("sensitivity_to_rotation_plot对数据旋转敏感") plt.show()
-
对训练集细节敏感
x[(x[:, 1]==x[:, 1][y==1].max()) & (y==1)] # widest iris-versicolor flower not_widest_versicolor = (x[:, 1]!=1.8) | (y==2) x_tweaked = x[not_widest_versicolor] y_tweaked = y[not_widest_versicolor] tree_clf_tweaked = decisiontreeclassifier(max_depth=2, random_state=40) tree_clf_tweaked.fit(x_tweaked, y_tweaked) plt.figure(figsize=(8, 4)) plot_decision_boundary(tree_clf_tweaked, x_tweaked, y_tweaked, legend=false) plt.plot([0, 7.5], [0.8, 0.8], "k-", linewidth=2) plt.plot([0, 7.5], [1.75, 1.75], "k--", linewidth=2) plt.text(1.0, 0.9, "depth=0", fontsize=15) plt.text(1.0, 1.80, "depth=1", fontsize=13) save_fig("decision_tree_inst ability_plot对训练集细节敏感") plt.show()
上一篇: 在linux上安装jdk
下一篇: 什么是怪异盒模型