欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 函数装饰器详解

程序员文章站 2022-06-21 23:54:49
目录授权(authorization)日志(logging)装饰器(decorators)是 python 的一个重要部分。简单地说:他们是修改其他函数的功能的函数。他们有助于让我们的代码更简短,也更...

装饰器(decorators)是 python 的一个重要部分。简单地说:他们是修改其他函数的功能的函数。他们有助于让我们的代码更简短,也更pythonic(python范儿)。大多数初学者不知道在哪儿使用它们,所以我将要分享下,哪些区域里装饰器可以让你的代码更简洁。首先,让我们讨论下如何写你自己的装饰器。

这可能是最难掌握的概念之一。我们会每次只讨论一个步骤,这样你能完全理解它。

一切皆对象

首先我们来理解下 python 中的函数:

def hi(name="yasoob"):
    return "hi " + name
print(hi())
# output: 'hi yasoob'
# 我们甚至可以将一个函数赋值给一个变量,比如
greet = hi
# 我们这里没有在使用小括号,因为我们并不是在调用hi函数
# 而是在将它放在greet变量里头。我们尝试运行下这个
print(greet())
# output: 'hi yasoob'
# 如果我们删掉旧的hi函数,看看会发生什么!
del hi
print(hi())
#outputs: nameerror
print(greet())
#outputs: 'hi yasoob'

在函数中定义函数

刚才那些就是函数的基本知识了。我们来让你的知识更进一步。在 python 中我们可以在一个函数中定义另一个函数:

def hi(name="yasoob"):
    print("now you are inside the hi() function")
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    print(greet())
    print(welcome())
    print("now you are back in the hi() function")
hi()
#output:now you are inside the hi() function
#       now you are in the greet() function
#       now you are in the welcome() function
#       now you are back in the hi() function
# 上面展示了无论何时你调用hi(), greet()和welcome()将会同时被调用。
# 然后greet()和welcome()函数在hi()函数之外是不能访问的,比如:
greet()
#outputs: nameerror: name 'greet' is not defined

那现在我们知道了可以在函数中定义另外的函数。也就是说:我们可以创建嵌套的函数。现在你需要再多学一点,就是函数也能返回函数。

从函数中返回函数

其实并不需要在一个函数里去执行另一个函数,我们也可以将其作为输出返回出来:

def hi(name="yasoob"):
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    if name == "yasoob":
        return greet
    else:
        return welcome
a = hi()
print(a)
#outputs: <function greet at 0x7f2143c01500>
#上面清晰地展示了`a`现在指向到hi()函数中的greet()函数
#现在试试这个
print(a())
#outputs: now you are in the greet() function

再次看看这个代码。在 if/else 语句中我们返回 greet 和 welcome,而不是 greet() 和 welcome()。为什么那样?这是因为当你把一对小括号放在后面,这个函数就会执行;然而如果你不放括号在它后面,那它可以被到处传递,并且可以赋值给别的变量而不去执行它。你明白了吗?让我再稍微多解释点细节。

当我们写下 a = hi(),hi() 会被执行,而由于 name 参数默认是 yasoob,所以函数 greet 被返回了。如果我们把语句改为 a = hi(name = "ali"),那么 welcome 函数将被返回。我们还可以打印出 hi()(),这会输出 now you are in the greet() function

将函数作为参数传给另一个函数

def hi():
    return "hi yasoob!"
def dosomethingbeforehi(func):
    print("i am doing some boring work before executing hi()")
    print(func())
dosomethingbeforehi(hi)
#outputs:i am doing some boring work before executing hi()
#        hi yasoob!

现在你已经具备所有必需知识,来进一步学习装饰器真正是什么了。装饰器让你在一个函数的前后去执行代码。

你的第一个装饰器

在上一个例子里,其实我们已经创建了一个装饰器!现在我们修改下上一个装饰器,并编写一个稍微更有用点的程序:

def a_new_decorator(a_func):
    def wrapthefunction():
        print("i am doing some boring work before executing a_func()")
        a_func()
        print("i am doing some boring work after executing a_func()")
    return wrapthefunction
def a_function_requiring_decoration():
    print("i am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()
#outputs: "i am the function which needs some decoration to remove my foul smell"
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
#now a_function_requiring_decoration is wrapped by wrapthefunction()
a_function_requiring_decoration()
#outputs:i am doing some boring work before executing a_func()
#        i am the function which needs some decoration to remove my foul smell
#        i am doing some boring work after executing a_func()

你看明白了吗?我们刚刚应用了之前学习到的原理。这正是 python 中装饰器做的事情!它们封装一个函数,并且用这样或者那样的方式来修改它的行为。现在你也许疑惑,我们在代码里并没有使用 @ 符号?那只是一个简短的方式来生成一个被装饰的函数。这里是我们如何使用 @ 来运行之前的代码:

@a_new_decorator
def a_function_requiring_decoration():
    """hey you! decorate me!"""
    print("i am the function which needs some decoration to "
          "remove my foul smell")
a_function_requiring_decoration()
#outputs: i am doing some boring work before executing a_func()
#         i am the function which needs some decoration to remove my foul smell
#         i am doing some boring work after executing a_func()
#the @a_new_decorator is just a short way of saying:
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)

希望你现在对 python 装饰器的工作原理有一个基本的理解。如果我们运行如下代码会存在一个问题:

print(a_function_requiring_decoration.__name__)
# output: wrapthefunction

这并不是我们想要的!ouput输出应该是"a_function_requiring_decoration"。这里的函数被warpthefunction替代了。它重写了我们函数的名字和注释文档(docstring)。幸运的是python提供给我们一个简单的函数来解决这个问题,那就是functools.wraps。我们修改上一个例子来使用functools.wraps:

from functools import wraps
def a_new_decorator(a_func):
    @wraps(a_func)
    def wrapthefunction():
        print("i am doing some boring work before executing a_func()")
        a_func()
        print("i am doing some boring work after executing a_func()")
    return wrapthefunction
@a_new_decorator
def a_function_requiring_decoration():
    """hey yo! decorate me!"""
    print("i am the function which needs some decoration to "
          "remove my foul smell")
print(a_function_requiring_decoration.__name__)
# output: a_function_requiring_decoration

现在好多了。我们接下来学习装饰器的一些常用场景。

蓝本规范:

from functools import wraps
def decorator_name(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        if not can_run:
            return "function will not run"
        return f(*args, **kwargs)
    return decorated
@decorator_name
def func():
    return("function is running")
can_run = true
print(func())
# output: function is running
can_run = false
print(func())
# output: function will not run

注意:@wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等的功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。

使用场景

现在我们来看一下装饰器在哪些地方特别耀眼,以及使用它可以让一些事情管理起来变得更简单。

授权(authorization)

装饰器能有助于检查某个人是否被授权去使用一个web应用的端点(endpoint)。它们被大量使用于flask和django web框架中。这里是一个例子来使用基于装饰器的授权:

from functools import wraps
def requires_auth(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        auth = request.authorization
        if not auth or not check_auth(auth.username, auth.password):
            authenticate()
        return f(*args, **kwargs)
    return decorated

日志(logging)

日志是装饰器运用的另一个亮点。这是个例子:

from functools import wraps
def logit(func):
    @wraps(func)
    def with_logging(*args, **kwargs):
        print(func.__name__ + " was called")
        return func(*args, **kwargs)
    return with_logging
@logit
def addition_func(x):
   """do some math."""
   return x + x
result = addition_func(4)
# output: addition_func was called

我敢肯定你已经在思考装饰器的一个其他聪明用法了。

带参数的装饰器

来想想这个问题,难道@wraps不也是个装饰器吗?但是,它接收一个参数,就像任何普通的函数能做的那样。那么,为什么我们不也那样做呢?这是因为,当你使用@my_decorator语法时,你是在应用一个以单个函数作为参数的一个包裹函数。记住,python里每个东西都是一个对象,而且这包括函数!记住了这些,我们可以编写一下能返回一个包裹函数的函数。

在函数中嵌入装饰器

我们回到日志的例子,并创建一个包裹函数,能让我们指定一个用于输出的日志文件:

from functools import wraps
def logit(logfile='out.log'):
    def logging_decorator(func):
        @wraps(func)
        def wrapped_function(*args, **kwargs):
            log_string = func.__name__ + " was called"
            print(log_string)
            # 打开logfile,并写入内容
            with open(logfile, 'a') as opened_file:
                # 现在将日志打到指定的logfile
                opened_file.write(log_string + '\n')
            return func(*args, **kwargs)
        return wrapped_function
    return logging_decorator
@logit()
def myfunc1():
    pass
myfunc1()
# output: myfunc1 was called
# 现在一个叫做 out.log 的文件出现了,里面的内容就是上面的字符串
@logit(logfile='func2.log')
def myfunc2():
    pass
myfunc2()
# output: myfunc2 was called
# 现在一个叫做 func2.log 的文件出现了,里面的内容就是上面的字符串

装饰器类

现在我们有了能用于正式环境的logit装饰器,但当我们的应用的某些部分还比较脆弱时,异常也许是需要更紧急关注的事情。比方说有时你只想打日志到一个文件。而有时你想把引起你注意的问题发送到一个email,同时也保留日志,留个记录。这是一个使用继承的场景,但目前为止我们只看到过用来构建装饰器的函数。

幸运的是,类也可以用来构建装饰器。那我们现在以一个类而不是一个函数的方式,来重新构建logit。

from functools import wraps
class logit(object):
    def __init__(self, logfile='out.log'):
        self.logfile = logfile
    def __call__(self, func):
        @wraps(func)
        def wrapped_function(*args, **kwargs):
            log_string = func.__name__ + " was called"
            print(log_string)
            # 打开logfile并写入
            with open(self.logfile, 'a') as opened_file:
                # 现在将日志打到指定的文件
                opened_file.write(log_string + '\n')
            # 现在,发送一个通知
            self.notify()
            return func(*args, **kwargs)
        return wrapped_function
    def notify(self):
        # logit只打日志,不做别的
        pass

这个实现有一个附加优势,在于比嵌套函数的方式更加整洁,而且包裹一个函数还是使用跟以前一样的语法:

@logit()
def myfunc1():
    pass

现在,我们给 logit 创建子类,来添加 email 的功能(虽然 email 这个话题不会在这里展开)。

class email_logit(logit):
    '''
    一个logit的实现版本,可以在函数调用时发送email给管理员
    '''
    def __init__(self, email='admin@myproject.com', *args, **kwargs):
        self.email = email
        super(email_logit, self).__init__(*args, **kwargs)
    def notify(self):
        # 发送一封email到self.email
        # 这里就不做实现了
        pass

从现在起,@email_logit 将会和 @logit 产生同样的效果,但是在打日志的基础上,还会多发送一封邮件给管理员。

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!