欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python之 matplotlib和pandas绘图教程

程序员文章站 2022-06-21 20:13:45
不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用。这里记录一些统计作图方法,包括pandas作图和plt作图。前提是先导入第三方库吧im...

不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用。这里记录一些统计作图方法,包括pandas作图和plt作图。

前提是先导入第三方库吧

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

然后以下这两句用于正常显示中文标签什么的。

plt.rcparams['font.sans-serif'] = ['simhei'] # 用来正常显示中文标签
plt.rcparams['axes.unicode_minus'] = false # 用来正常显示负号

当然还有一些最基本的步骤:

plt.xticks(x,xtk,size=12,rotation=50) #设置字体大小和字体倾斜度
plt.xlabel(u'城市') # x轴标签
plt.ylabel(u'数量')
plt.title(u'朋友所在城市') # 图的名称
plt.legend() # 正常显示标题
plt.show() # 显示图像
plt.close() # 绘图后养成习惯性的关掉

对于pandas中的二维数据框,可以直接作图(series类型),简单的折线图或者曲线图如下:

sdata.plot(color='r', style='-o')
plt.show()

python之 matplotlib和pandas绘图教程

如果没有用pandas,直接作曲线图,可以这样写:

plot(x,y, color ='blue', linewidth=2.5, linestyle="--")

1,柱状图

rects1=plt.bar(           #(x,data) 就是所要画的二维数据
    left=x,           #x 是x坐标轴数据,即每个块的x轴起始位置
    height=data,         #data是y坐标轴的数据,即每个块的y轴高度
    width=[0.1,0.2,0.3],     #每一个块的显示宽度
    bottom=[1,2,3],       #每一个块的底部高度
    color='y',          #块的颜色
    edgecolor='g',        #块的边界颜色
    linewidth=2,         #块的线条宽度
    xerr=1,           #x轴误差bar
    yerr=1,           #y轴误差bar
    ecolor='r',         #误差bar的颜色
    capsize=1,          #误差bar的线条宽度
    orientation='vertical',   #块的方向 (horizontal,vertical)
    align="center",       #块的位置 (center, left, right)
    hold=none
    )
 
plt.show()

2,饼图

plot2=plt.pie(data,             # 每个饼块的实际数据,如果大于1,会进行归一化,计算percentage
    explode=[0.0,0.1,0.2],        # 每个饼块离中心的距离
    colors=['y','r','g'],        # 每个饼块的颜色
    labels=['women','men','unknown'],  # 每个饼块的标签
    labeldistance=1.2,          # 每个饼块标签到中心的距离
    autopct='%1.1f%%',         # 百分比的显示格式
    pctdistance=0.4,           # 百分比到中心的距离
    shadow=true,             # 每个饼块是否显示阴影
    startangle=0,            # 默认从x轴正半轴逆时针起
    radius=1.0              # 饼块的半径
    )
plt.axis('equal') # 显示为圆形,避免比例压缩为椭圆
plt.show()

3,共享x轴,y轴左右轴标(帕累托分析图)

数据样例如下,名称为va,类型为series,左边为职位名称,右边为数量:

sales     4140
technical   2720
support    2229
it       1227
product_mng   902
marketing    858
randd      787
accounting   767
hr       739
management   630

作图:

fr = pd.series(va.values.cumsum() / va.values.sum())
va.plot(kind='bar')
fr.plot(color='r',secondary_y=true, style='-o')
plt.annotate(format(fr[7], '.2%'), xy=(7, fr[7]), xytext=(7*0.9, fr[7]*0.9),
       arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=.2')) # 用于注释图形指标
# plt.rcparams['font.sans-serif'] = ['simhei'] # 用来正常显示中文标签
# plt.rcparams['axes.unicode_minus'] = false # 用来正常显示负号
# plt1 = plt.pie(va.values,
#        labels=va.index,
#        autopct='%1.1f%%')
plt.xticks(rotation=50) # 设置字体大小和字体倾斜度
plt.show()

左边为出现的频率,右边为累积百分比(这里数据以降序排列较好,便于直观地观察),效果如下:

python之 matplotlib和pandas绘图教程

在pandas中,曲线图可以直接画,比如data中有多个属性,可以直接使用data.plot()。使用plt,若各个属性需要共用xy轴,那么可以重复plot即可。

4,箱型图

使用pandas画箱型图简单方便,但是注释比较麻烦,可以用annotate添加异常点的注释。若使用之前的数据va,则先创建二维数据框再画图。如果有多个列为数字类型,那么可以画每个列的箱型图,这里只有一列数据,如下:

pd.dataframe(va).boxplot()
plt.show()

python之 matplotlib和pandas绘图教程

使用plt直接进行作图:

plt.boxplot(data,labels=[],
     sym='o',whis=1.5)

其中,data可以是一维的,也可多维,若为多维则lables为每一维度的标签。sym为异常值的形状,whis为调节垂直线段的长度。效果如下:

python之 matplotlib和pandas绘图教程

5,多张图在一张画布中,即多个子图

使用plt:

plt.subplot(221)
plt.plot(x, y1,'r-', lw=2) 
plt.subplot(222)
plt.plot(x,y2)

使用pandas:

data.plot(subplots=true, color=['r','b'], style=['-o','-'])
plt.show()

排版方式有不同,pandas是垂直排列,plt可以自己指定位置。pandas效果如下:

python之 matplotlib和pandas绘图教程

补充:python dataframe 多条件筛选 使用&

我就废话不多说了,大家还是直接看代码吧~

df6
out[42]: 
 b c d
0 1 b 10.750
1 3 c 8.875
2 2 t 58.000
3 2 l 57.000
4 3 y 46.000
df6[(df6.b>1) & (df6.d > 10)]
out[45]: 
 b c d
2 2 t 58.0
3 2 l 57.0
4 3 y 46.0

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。