欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现人工蜂群算法

程序员文章站 2022-06-21 17:32:19
absindividual.pyimport numpy as npimport objfunctionclass absindividual: ''' individual of artific...

absindividual.py

import numpy as np
import objfunction


class absindividual:

  '''
  individual of artificial bee swarm algorithm
  '''

  def __init__(self, vardim, bound):
    '''
    vardim: dimension of variables
    bound: boundaries of variables
    '''
    self.vardim = vardim
    self.bound = bound
    self.fitness = 0.
    self.trials = 0

  def generate(self):
    '''
    generate a random chromsome for artificial bee swarm algorithm
    '''
    len = self.vardim
    rnd = np.random.random(size=len)
    self.chrom = np.zeros(len)
    for i in xrange(0, len):
      self.chrom[i] = self.bound[0, i] + \
        (self.bound[1, i] - self.bound[0, i]) * rnd[i]

  def calculatefitness(self):
    '''
    calculate the fitness of the chromsome
    '''
    self.fitness = objfunction.griefunc(
      self.vardim, self.chrom, self.bound)

abs.py

import numpy as np
from absindividual import absindividual
import random
import copy
import matplotlib.pyplot as plt


class artificialbeeswarm:

  '''
  the class for artificial bee swarm algorithm
  '''

  def __init__(self, sizepop, vardim, bound, maxgen, params):
    '''
    sizepop: population sizepop
    vardim: dimension of variables
    bound: boundaries of variables
    maxgen: termination condition
    params: algorithm required parameters, it is a list which is consisting of[traillimit, c]
    '''
    self.sizepop = sizepop
    self.vardim = vardim
    self.bound = bound
    self.foodsource = self.sizepop / 2
    self.maxgen = maxgen
    self.params = params
    self.population = []
    self.fitness = np.zeros((self.sizepop, 1))
    self.trace = np.zeros((self.maxgen, 2))

  def initialize(self):
    '''
    initialize the population of abs
    '''
    for i in xrange(0, self.foodsource):
      ind = absindividual(self.vardim, self.bound)
      ind.generate()
      self.population.append(ind)

  def evaluation(self):
    '''
    evaluation the fitness of the population
    '''
    for i in xrange(0, self.foodsource):
      self.population[i].calculatefitness()
      self.fitness[i] = self.population[i].fitness

  def employedbeephase(self):
    '''
    employed bee phase
    '''
    for i in xrange(0, self.foodsource):
      k = np.random.random_integers(0, self.vardim - 1)
      j = np.random.random_integers(0, self.foodsource - 1)
      while j == i:
        j = np.random.random_integers(0, self.foodsource - 1)
      vi = copy.deepcopy(self.population[i])
      # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
      #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
      # for k in xrange(0, self.vardim):
      #   if vi.chrom[k] < self.bound[0, k]:
      #     vi.chrom[k] = self.bound[0, k]
      #   if vi.chrom[k] > self.bound[1, k]:
      #     vi.chrom[k] = self.bound[1, k]
      vi.chrom[
        k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
      if vi.chrom[k] < self.bound[0, k]:
        vi.chrom[k] = self.bound[0, k]
      if vi.chrom[k] > self.bound[1, k]:
        vi.chrom[k] = self.bound[1, k]
      vi.calculatefitness()
      if vi.fitness > self.fitness[fi]:
        self.population[fi] = vi
        self.fitness[fi] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      vi.calculatefitness()
      if vi.fitness > self.fitness[i]:
        self.population[i] = vi
        self.fitness[i] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      else:
        self.population[i].trials += 1

  def onlookerbeephase(self):
    '''
    onlooker bee phase
    '''
    accufitness = np.zeros((self.foodsource, 1))
    maxfitness = np.max(self.fitness)

    for i in xrange(0, self.foodsource):
      accufitness[i] = 0.9 * self.fitness[i] / maxfitness + 0.1

    for i in xrange(0, self.foodsource):
      for fi in xrange(0, self.foodsource):
        r = random.random()
        if r < accufitness[i]:
          k = np.random.random_integers(0, self.vardim - 1)
          j = np.random.random_integers(0, self.foodsource - 1)
          while j == fi:
            j = np.random.random_integers(0, self.foodsource - 1)
          vi = copy.deepcopy(self.population[fi])
          # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
          #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
          # for k in xrange(0, self.vardim):
          #   if vi.chrom[k] < self.bound[0, k]:
          #     vi.chrom[k] = self.bound[0, k]
          #   if vi.chrom[k] > self.bound[1, k]:
          #     vi.chrom[k] = self.bound[1, k]
          vi.chrom[
            k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
          if vi.chrom[k] < self.bound[0, k]:
            vi.chrom[k] = self.bound[0, k]
          if vi.chrom[k] > self.bound[1, k]:
            vi.chrom[k] = self.bound[1, k]
          vi.calculatefitness()
          if vi.fitness > self.fitness[fi]:
            self.population[fi] = vi
            self.fitness[fi] = vi.fitness
            if vi.fitness > self.best.fitness:
              self.best = vi
          else:
            self.population[fi].trials += 1
          break

  def scoutbeephase(self):
    '''
    scout bee phase
    '''
    for i in xrange(0, self.foodsource):
      if self.population[i].trials > self.params[0]:
        self.population[i].generate()
        self.population[i].trials = 0
        self.population[i].calculatefitness()
        self.fitness[i] = self.population[i].fitness

  def solve(self):
    '''
    the evolution process of the abs algorithm
    '''
    self.t = 0
    self.initialize()
    self.evaluation()
    best = np.max(self.fitness)
    bestindex = np.argmax(self.fitness)
    self.best = copy.deepcopy(self.population[bestindex])
    self.avefitness = np.mean(self.fitness)
    self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    print("generation %d: optimal function value is: %f; average function value is %f" % (
      self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    while self.t < self.maxgen - 1:
      self.t += 1
      self.employedbeephase()
      self.onlookerbeephase()
      self.scoutbeephase()
      best = np.max(self.fitness)
      bestindex = np.argmax(self.fitness)
      if best > self.best.fitness:
        self.best = copy.deepcopy(self.population[bestindex])
      self.avefitness = np.mean(self.fitness)
      self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
      self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
      print("generation %d: optimal function value is: %f; average function value is %f" % (
        self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    print("optimal function value is: %f; " % self.trace[self.t, 0])
    print "optimal solution is:"
    print self.best.chrom
    self.printresult()

  def printresult(self):
    '''
    plot the result of abs algorithm
    '''
    x = np.arange(0, self.maxgen)
    y1 = self.trace[:, 0]
    y2 = self.trace[:, 1]
    plt.plot(x, y1, 'r', label='optimal value')
    plt.plot(x, y2, 'g', label='average value')
    plt.xlabel("iteration")
    plt.ylabel("function value")
    plt.title("artificial bee swarm algorithm for function optimization")
    plt.legend()
    plt.show()

运行程序:

 if __name__ == "__main__":
 
   bound = np.tile([[-600], [600]], 25)
   abs = abs(60, 25, bound, 1000, [100, 0.5])
   abs.solve()

objfunction见。

以上就是python实现人工蜂群算法的详细内容,更多关于python 人工蜂群算法的资料请关注其它相关文章!