DIOR数据集转化为COCO格式
程序员文章站
2022-03-11 15:08:19
DIOR数据集转化为COCO格式为了实验方便,需要将DIOR数据集转化为COCO格式,在此将代码共享,希望能帮助到同样研究方向的人。解压DIOR数据集的压缩文件之后,你的路径应该是这样的:第一个参数是你电脑里上图的路径,第二个参数是你想输出COCO格式文件的路径DIOR缺少很多COCO格式的数据,所以缺少的项都为空,代码如下import osimport cv2from tqdm import tqdmimport jsonimport xml.dom.minidomc...
DIOR数据集转化为COCO格式
为了实验方便,需要将DIOR数据集转化为COCO格式,在此将代码共享,希望能帮助到同样研究方向的人。
解压DIOR数据集的压缩文件之后,你的路径应该是这样的:
第一个参数是你电脑里上图的路径,第二个参数是你想输出COCO格式文件的路径
DIOR缺少很多COCO格式的数据,所以缺少的项都为空,代码如下
import os
import cv2
from tqdm import tqdm
import json
import xml.dom.minidom
category_list = ['airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge', 'chimney', 'dam',
'Expressway-Service-area', 'Expressway-toll-station', 'golffield', 'groundtrackfield', 'harbor',
'overpass', 'ship', 'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle', 'windmill']
def convert_to_cocodetection(dir, output_dir):
"""
input:
dir:the path to DIOR dataset
output_dir:the path write the coco form json file
"""
annotations_path = dir
namelist_path = os.path.join(dir, "Main")
trainval_images_path = os.path.join(dir, "JPEGImages-trainval")
test_images_path = os.path.join(dir, "JPEGImages-test")
id_num = 0
categories = [{"id": 0, "name": "Airplane"},
{"id": 1, "name": "Airport"},
{"id": 2, "name": "Baseball field"},
{"id": 3, "name": "Basketball court"},
{"id": 4, "name": "Bridge"},
{"id": 5, "name": "Chimney"},
{"id": 6, "name": "Dam"},
{"id": 7, "name": "Expressway service area"},
{"id": 8, "name": "Expressway toll station"},
{"id": 9, "name": "Golf course"},
{"id": 10, "name": "Ground track field"},
{"id": 11, "name": "Harbor"},
{"id": 12, "name": "Overpass"},
{"id": 13, "name": "Ship"},
{"id": 14, "name": "Stadium"},
{"id": 15, "name": "Storage tank"},
{"id": 16, "name": "Tennis court"},
{"id": 17, "name": "Train station"},
{"id": 18, "name": "Vehicle"},
{"id": 19, "name": "Wind mill"},
]
for mode in ["train", "val"]:
images = []
annotations = []
print(f"start loading {mode} data...")
if mode == "train":
f = open(namelist_path + "/" + "train.txt", "r")
images_path = trainval_images_path
else:
f = open(namelist_path + "/" + "val.txt", "r")
images_path = trainval_images_path
for name in tqdm(f.readlines()):
# image part
image = {}
name = name.replace("\n", "")
image_name = name + ".jpg"
annotation_name = name + ".xml"
height, width = cv2.imread(images_path + "/" + image_name).shape[:2]
image["file_name"] = image_name
image["height"] = height
image["width"] = width
image["id"] = name
images.append(image)
# anno part
dom = xml.dom.minidom.parse(dir + "/" + annotation_name)
root_data = dom.documentElement
for i in range(len(root_data.getElementsByTagName('name'))):
annotation = {}
category = root_data.getElementsByTagName('name')[i].firstChild.data
top_left_x = root_data.getElementsByTagName('xmin')[i].firstChild.data
top_left_y = root_data.getElementsByTagName('ymin')[i].firstChild.data
right_bottom_x = root_data.getElementsByTagName('xmax')[i].firstChild.data
right_bottom_y = root_data.getElementsByTagName('ymax')[i].firstChild.data
bbox = [top_left_x, top_left_y, right_bottom_x, right_bottom_y]
bbox = [int(i) for i in bbox]
bbox = xyxy_to_xywh(bbox)
annotation["image_id"] = name
annotation["bbox"] = bbox
annotation["category_id"] = category_list.index(category)
annotation["id"] = id_num
annotation["iscrowd"] = 0
annotation["segmentation"] = []
annotation["area"] = bbox[2] * bbox[3]
id_num += 1
annotations.append(annotation)
dataset_dict = {}
dataset_dict["images"] = images
dataset_dict["annotations"] = annotations
dataset_dict["categories"] = categories
json_str = json.dumps(dataset_dict)
with open(f'{output_dir}/DIOR_{mode}_coco.json', 'w') as json_file:
json_file.write(json_str)
print("json file write done...")
def get_test_namelist(dir, out_dir):
full_path = out_dir + "/" + "test.txt"
file = open(full_path, 'w')
for name in tqdm(os.listdir(dir)):
name = name.replace(".txt", "")
file.write(name + "\n")
file.close()
return None
def centerxywh_to_xyxy(boxes):
"""
args:
boxes:list of center_x,center_y,width,height,
return:
boxes:list of x,y,x,y,cooresponding to top left and bottom right
"""
x_top_left = boxes[0] - boxes[2] / 2
y_top_left = boxes[1] - boxes[3] / 2
x_bottom_right = boxes[0] + boxes[2] / 2
y_bottom_right = boxes[1] + boxes[3] / 2
return [x_top_left, y_top_left, x_bottom_right, y_bottom_right]
def centerxywh_to_topleftxywh(boxes):
"""
args:
boxes:list of center_x,center_y,width,height,
return:
boxes:list of x,y,x,y,cooresponding to top left and bottom right
"""
x_top_left = boxes[0] - boxes[2] / 2
y_top_left = boxes[1] - boxes[3] / 2
width = boxes[2]
height = boxes[3]
return [x_top_left, y_top_left, width, height]
def xyxy_to_xywh(boxes):
width = boxes[2] - boxes[0]
height = boxes[3] - boxes[1]
return [boxes[0], boxes[1], width, height]
def clamp(coord, width, height):
if coord[0] < 0:
coord[0] = 0
if coord[1] < 0:
coord[1] = 0
if coord[2] > width:
coord[2] = width
if coord[3] > height:
coord[3] = height
return coord
if __name__ == '__main__':
convert_to_cocodetection(r"path to your DIOR dataset", r"the path you want to write the coco format json file")
本文地址:https://blog.csdn.net/qq_20793791/article/details/110881417
上一篇: “管道不畅”,车联网落地受阻
下一篇: 我在校园自动打卡v2.0