欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

什么是实时流式计算?

程序员文章站 2022-06-20 20:59:07
实时流式计算,也就是RealTime,Streaming,Analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。 实时流式计算,或者是实时计算,流式计算,在大数据领域都是差不多的概念。那么,到底什么是实时流式计算呢? 谷歌大神Tyler Akidau在《the world ......

什么是实时流式计算?

实时流式计算,也就是realtime,streaming,analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。
实时流式计算,或者是实时计算,流式计算,在大数据领域都是差不多的概念。那么,到底什么是实时流式计算呢?
谷歌大神tyler akidau在《the-world-beyond-batch-streaming-101》一文中提到过实时流式计算的三个特征:
1、无限数据
2、*数据处理
3、低延迟

无限数据指的是,一种不断增长的,基本上无限的数据集。这些通常被称为“流数据”,而与之相对的是有限的数据集。
*数据处理,一种持续的数据处理模式,能够通过处理引擎重复的去处理上面的无限数据,是能够突破有限数据处理引擎的瓶颈的。
低延迟,延迟是多少并没有明确的定义。但我们都知道数据的价值将随着时间的流逝降低,时效性将是需要持续解决的问题。

现在大数据应用比较火爆的领域,比如推荐系统在实践之初受技术所限,可能要一分钟,一小时,甚至更久对用户进行推荐,这远远不能满足需要,我们需要更快的完成对数据的处理,而不是进行离线的批处理。
但是这种模型肯定会带来离线批处理所不存在的两个问题:正确性与时间。
而这也正是实时流式计算的关键点:
1、正确性 一旦正确性有了保证,可以匹敌批处理。
2、时间推导工具 而一旦提供了时间推导的工具,变完全超过了批处理。

总结来说,我们得到的会是一条条的,随着时间流逝不断增长的数据,我们需要进行实时的数据分析,我们要解决大数据量,灾备,时序,时间窗口,性能等等问题。
而实时,流式其实是相对的概念,现在的很多技术更应该说是近实时,微批。但只要能不断的优化这些问题,实时流式的计算的价值就会越来越大。

由于大数据兴起之初,hadoop并没有给出实时计算解决方案,随后storm,sparkstreaming,flink等实时计算框架应运而生,而kafka,es的兴起使得实时计算领域的技术越来越完善,而随着物联网,机器学习等技术的推广,实时流式计算将在这些领域得到充分的应用。
下面简单介绍目前常用的几种应用场景,未来将对kafka,storm,sparkstreaming,flink等相关技术做具体介绍。

主要应用

1、日志分析
比如对网站的用户访问日志进行实时的分析,计算访问量,用户画像,留存率等等,实时的进行数据分析,帮助企业进行决策。
什么是实时流式计算?

2、物联网
比如对电力系统进行实时的数据检测,进行报警,实时的显示,或者根据历史数据进行实时的分析,预测。
什么是实时流式计算?

3、车联网
如今的车联网已经不限于物联网,还包括对用户,交通等等进行分析的一个庞大的系统,改善用户出行。
什么是实时流式计算?

4、金融风控
通过对交易等金融行为实时分析,预测出未知风险。
什么是实时流式计算?

还有很多应用的领域,而且未来会越来越多,在这个过程中具体的业务,以及与技术结合能产生什么样的价值,还需要不断的探索。

《the-world-beyond-batch-streaming-101》地址: