欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python基础数组

程序员文章站 2022-06-20 13:04:38
#1(a)df = pd.read_csv(r'D:\python\python3.6\pysl\Pre_\Pandas(下)综合练习数据集\端午粽子数据.csv')df.columns = df.columns.str.strip()df1 = df[df['发货地址'].notna()]s = df1.groupby('发货地址').get_group('浙江 杭州')s['价格'][~(s['价格'].str.replace(r'-?\d+\.?\d+','True')=='True')]...
#1(a)
df = pd.read_csv(r'D:\python\python3.6\pysl\Pre_\Pandas(下)综合练习数据集\端午粽子数据.csv')
df.columns = df.columns.str.strip()
df1 = df[df['发货地址'].notna()]
s = df1.groupby('发货地址').get_group('浙江 杭州')
s['价格'][~(s['价格'].str.replace(r'-?\d+\.?\d+','True')=='True')]
s.loc[[4376], '价格'] = [45]
s['价格'].astype('float').mean()
#1(b)
df1[(df1['标题'].str.contains(r'[嘉兴]{2}')) & (~(df1['发货地址'].str.contains(r'[嘉兴]{2}')))]
#1(c)
df1['价格'][~(df1['价格'].str.replace(r'-?\d+\.?\d+','True')=='True')]
df1.loc[[538, 4376], '价格'] = [45.9, 45]
a = df1['价格'].astype('float').quantile(0.2)
b = df1['价格'].astype('float').quantile(0.4)
c = df1['价格'].astype('float').quantile(0.6)
d = df1['价格'].astype('float').quantile(0.8)
e = df1['价格'].astype('float').max()
s1 = pd.cut(df1['价格'].astype('float'), [0, a, b, c, d, e], labels=['低', '较低', '中', '较高', '高'])
df1.insert(1, '类别', s1)
df1.sort_values(by='类别', ascending=False)
#1(d)(不会)
df1['付款人数'].isna().sum()
grouped = df1.groupby('类别')

#1(e)
s3 = pd.Series("商品发货地为" + df1['发货地址'] + ",店铺为" + df1['店铺']
          + ",共计" + df1['付款人数'] + ",单价为" + df1['价格'].astype('str'))
#1(f)(不会)

#2(a)
df3 = pd.read_csv(r'D:\python\python3.6\pysl\Pre_\Pandas(下)综合练习数据集\墨尔本温度数据.csv')
holiday = pd.date_range(start='1981-05-01', end='1981-05-03').append(pd.date_range(start='1981-10-01', end='1981-10-07')).append(
    pd.date_range(start='1982-05-01', end='1982-05-03')).append(pd.date_range(start='1982-10-01', end='1982-10-07')).append(
    pd.date_range(start='1983-05-01', end='1983-05-03')).append(pd.date_range(start='1983-10-01', end='1983-10-07')).append(
    pd.date_range(start='1984-05-01', end='1984-05-03')).append(pd.date_range(start='1984-10-01', end='1984-10-07')).append(
    pd.date_range(start='1985-05-01', end='1985-05-03')).append(pd.date_range(start='1985-10-01', end='1985-10-07')).append(
    pd.date_range(start='1986-05-01', end='1986-05-03')).append(pd.date_range(start='1986-10-01', end='1986-10-07')).append(
    pd.date_range(start='1987-05-01', end='1987-05-03')).append(pd.date_range(start='1987-10-01', end='1987-10-07')).append(
    pd.date_range(start='1988-05-01', end='1988-05-03')).append(pd.date_range(start='1988-10-01', end='1988-10-07')).append(
    pd.date_range(start='1989-05-01', end='1989-05-03')).append(pd.date_range(start='1989-10-01', end='1989-10-07')).append(
    pd.date_range(start='1990-05-01', end='1990-05-03')).append(pd.date_range(start='1990-10-01', end='1990-10-07')).append(
    pd.bdate_range(start='1981-01-01', end='1990-12-31', freq='BMS'))
df3['Date'] = pd.to_datetime(df3['Date'])
df3[~df3['Date'].isin(holiday)].set_index('Date').resample('MS').mean()
#2(b)
y_mean = df3.set_index('Date').resample('YS').mean()
m_mean = df3.set_index('Date').resample('MS').mean()
for i in range(81,90):
    for j in range(1,12):
        Sj = m_mean['19{0}-{1}'.format(i,j)]/y_mean['19{0}'.format(i)]
        print(Sj)

本文地址:https://blog.csdn.net/qq_45334789/article/details/107072370