欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python多进程原理与用法分析

程序员文章站 2022-06-20 09:24:01
本文实例讲述了python多进程原理与用法。分享给大家供大家参考,具体如下: 进程是程序在计算机上的一次执行活动。当你运行一个程序,你就启动了一个进程。显然,程序是死的(...

本文实例讲述了python多进程原理与用法。分享给大家供大家参考,具体如下:

进程是程序在计算机上的一次执行活动。当你运行一个程序,你就启动了一个进程。显然,程序是死的(静态的),进程是活的(动态的)。进程可以分为系统进程和用户进程。凡是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身;所有由你启动的进程都是用户进程。进程是操作系统进行资源分配的单位。

开启一个进程

import multiprocessing,time,os
def runtask():
  time.sleep(2)
  print("开启一个进程:%s"%os.getpid())
if __name__ == "__main__":
  p = multiprocessing.process(target=runtask,)
  p.start()

进程队列

import multiprocessing
def runtask():
  q.put([42,"python"])
if __name__ == "__main__":
  q = multiprocessing.queue()
  p = multiprocessing.process(target=runtask,)
  p.start()
  print(q.get())   # 打印结果:[42,"python"]

pipe管道

返回两个连接对象。代表管道的两端,默认双向通信。

import multiprocessing
def runtask():
  conn.send("abc")
  conn.close()
if __name__ == "__main__":
  conn,pconn = multiprocessing.pipe()
  p = multiprocessing.process()
  p.start()
  print(pconn.recv())   # 打印结果:"abc"

value、array

共享内存有两个结构,一个是value,一个是array,这两个结构内部都实现了锁机制,因此进程是安全的。

import multiprocess
def runtask():
  d.value = 50
  for index in range(len(a)):
    a[index]+=10
if __name__ == "__main__":
  # 下面的字符"d"、"i"似乎是固定的,换成其他将会报错。求大神解释
  d = value("d",20)
  a = array("i",range(10))
  p = multiprocessing.process(target=runtask,)
  p.start()
  p.join()  # 等待进程执行完毕
  print(d.value,a[:])   # 打印结果: 50.0 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

manager

python实现多进程之间通信除了queue(队列)、pipe(管道)和value-array之外,还提供了更高层次的封装。manager支持的类型非常多,如:list, dict, namespace, lock, rlock, semaphore, boundedsemaphore, condition, event, queue, value 和 array 用法如下:

import multiprocessing
def runtask():
  d["name"] = "laowang"
  l.reverse()
if __name__ == "__main__":
  with multiprocessing.manager() as manager:
    d = manager.dict()
    l = manager.list(range(10))
    p = multiprocessing.process(target=runtask,)
    p.start()
    p.join()    # 等待进程执行完毕
    print(d,l)   # 打印结果:{'name': 'laowang'} [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

进程池pool

pool 是进程池,进程池能够管理一定的进程,当有空闲进程时,则利用空闲进程完成任务,直到所有任务完成为止

import multiprocessing
def runtask():
  pass
def callbacktask(arg):     # 回调函数必须要有一个形参,否则将报错
  print("执行回调函数",arg)
if __name__ == "__main__":
  pool = multiprocessing.pool(5)   # 设置进程池最大同时执行进程数
  for index in range(20):
    pool.apply_async(func=runtask,callback=callbacktask)  # 并行的,有回调方法
    # pool.apply(func=runtask,)    # 串行的,无回调函数
  pool.close()  # 关闭进程池
  pool.join()   # #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

执行结果:apply方法效果为一个进行接一个进程的执行,而apply_async是同时有5个进程在执行。

更多关于python相关内容感兴趣的读者可查看本站专题:《python进程与线程操作技巧总结》、《python socket编程技巧总结》、《python数据结构与算法教程》、《python函数使用技巧总结》、《python字符串操作技巧汇总》、《python入门与进阶经典教程》及《python文件与目录操作技巧汇总

希望本文所述对大家python程序设计有所帮助。