python实现K近邻回归,采用等权重和不等权重的方法
程序员文章站
2022-06-19 21:42:00
如下所示:
from sklearn.datasets import load_boston
boston = load_boston()
fro...
如下所示:
from sklearn.datasets import load_boston boston = load_boston() from sklearn.cross_validation import train_test_split import numpy as np; x = boston.data y = boston.target x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 33, test_size = 0.25) print 'the max target value is: ', np.max(boston.target) print 'the min target value is: ', np.min(boston.target) print 'the average terget value is: ', np.mean(boston.target) from sklearn.preprocessing import standardscaler ss_x = standardscaler() ss_y = standardscaler() x_train = ss_x.fit_transform(x_train) x_test = ss_x.transform(x_test) y_train = ss_y.fit_transform(y_train) y_test = ss_y.transform(y_test) from sklearn.neighbors import kneighborsregressor uni_knr = kneighborsregressor(weights = 'uniform') uni_knr.fit(x_train, y_train) uni_knr_y_predict = uni_knr.predict(x_test) dis_knr = kneighborsregressor(weights = 'distance') dis_knr.fit(x_train, y_train) dis_knr_y_predict = dis_knr.predict(x_test) from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error print 'r-squared value of uniform weights kneighorregressor is: ', uni_knr.score(x_test, y_test) print 'the mean squared error of uniform weights kneighorregressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict)) print 'the mean absolute error of uniform weights kneighorregressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict)) print 'r-squared of distance weights kneighorregressor is: ', dis_knr.score(x_test, y_test) print 'the value of mean squared error of distance weights kneighorregressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict)) print 'the value of mean ssbsolute error of distance weights kneighorregressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
以上这篇python实现k近邻回归,采用等权重和不等权重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。