欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

理解和学习Solr的score机制

程序员文章站 2022-06-19 19:35:38
...
 
 
在solr的document文档定义中(schema.xml),需要对每个字段进行定义indexed, stored,其中表示的含义为:
 
 
字段名称 字段含义  
indexed
如果该字段是要做查询的,需要将其设置为indexed,进行索引,以便能够根据该字段进行查询。
但是与具体分词手段无关,如果涉及到如果分词,需要使用type属性
 
stored 在solr查询结果中能够正常返回,如果一个字段stored=false,则查询结果不会包括该字段。  
 
 
而只有indexed的字段可以用于查询,虽然solr中有sort字段可以进行排序,这一般用于精确匹配的查询,例如按照分类/品牌进行搜索得到结果。如果用户采用关键词的方式进行模糊匹配,此时使用sort根据某个字段进行排序会显得不合时宜,无法帮助用户搜索到他想要的结果(更多是被sort所控制,这就好比百度的竞价排名系统)。
 
根据查询打分的相关文档可以看出,Solr中采用了最基本的向量空间模型:
 

理解和学习Solr的score机制
            
    
    博客分类: solr&lucene solr打分
 
 
其中存在的索引文件.tvx, tvd, tvf存储了term vector相关信息,我们学习如何使用term vector来反映相似性程度。在向量空间模型中,夹角越小,说明相似程度越大,可以用cos余弦函数定理来计算。

 
理解和学习Solr的score机制
            
    
    博客分类: solr&lucene solr打分
 
 
相似值计算公式:t=term, d=document, q=query, f=field
 
  • tf(t in d ) 表示该term 在 这个文档里出现的频率(即出现了几次)。
  •  idf(t) 表示 出现该term的文档个数。
  •  t.getBoost() 查询语句中每个词的权重,可以在查询中设定某个词更加重要。

 

  • norm(t,d) 标准化因子d.getBoost() • lengthNorm(f) • f.getBoost() ,它包括三个参数:
    • Document boost:此值越大,说明此文档越重要。
    • Field boost:此域越大,说明此域越重要。
    • lengthNorm(field) = (1.0 / Math.sqrt(numTerms)):一个域中包含的Term总数越多,也即文档越长,此值越小,文档越短,此值越大。
  • coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包含的搜索词越多,则此文档则打分越高 ,numTermsInDocumentFromQuery / numTermsInQuery 
  • queryNorm(q):计算每个查询条目的方差和,此值并不影响排序,而仅仅使得不同的query之间的分数可以比较。
 
我们当前环境的/select相关配置:
 
 
<!-- SearchHandler -->
  <requestHandler name="/select" class="com.zp.solr.handler.component.ZpSearchHandler">
    <lst name="defaults">
      <str name="defType">edismax</str>
      <str name="echoParams">explicit</str>
      <str name="wt">json</str>
      <str name="indent">true</str>
      <str name="df">text</str>
      <str name="bf">
          map(psfixstock,0,0,0,100)
      </str>
    </lst>
    <shardHandlerFactory class="HttpShardHandlerFactory">
      <int name="maxConnectionsPerHost">1000</int>
      <int name="corePoolSize">50</int>
    </shardHandlerFactory>
  </requestHandler>
 
  <!-- A request handler that returns indented JSON by default -->
  <requestHandler name="/query" class="solr.SearchHandler">
     <lst name="defaults">
       <str name="echoParams">explicit</str>
       <str name="wt">json</str>
       <str name="indent">true</str>
       <str name="df">text</str>
     </lst>
  </requestHandler>
 
 
可以看出当前使用了edismax方式,默认查询字段df为text,boost function已经被设置,但存在较大问题:搜索的排序严重与货物的库存数量相关,这肯定会导致用户无法查询出其想要的最精确的结果(即便是无库存,用户也可能希望能够返回正确的商品,而不是有库存的不相关商品)。Solr查询中的常用参数列表:
 
 
参数 含义  
df default fields,默认查询字段  
wt writer type,指定查询输出结构格式,默认xml  
defType 设置查询解析器名称  
bf boost function,可接受多个函数查询,用空格隔开  
qf query fields,指定索引中查询字段,如果没有指定,默认使用df  
q 查询字符串,必输项  
q.op 默认查询连接符,AND OR  
sort 排序,sort=<field_name>+<desc|asc>,...  
start 分页定义结果起始记录数,默认为0  
rows 分页定义结果每页返回记录数,默认为10  
fq filter query,可充分利用filter query cache,提高检索性能。在q查询符合结果中同时是fq查询符合的  
fl field list,指定返回结果字段,以空格或逗号分隔  
timeAllowed 设置查询超时时间  
bq boost query,指定一个单词或短语提升查询权重  
mm Minimum Should Match,指定查询中必须匹配的最小规则数,如果没有在查询中或在solrconfig.xml文件中指定mm参数值,q.op参数的有效性将会受到影响。如果q.op是AND,则mm=100%,如果q.op是OR,则mm=1(100%表示全部匹配,1表示只要有一个匹配即可)。如果用户想修改这些行为,可以在solrconfig.xml文件中定义mm参数  
 
 
Solr 支持多种查询解析,给搜索引擎开发人员提供灵活的查询解析。Solr 中主要包含这几个查询解析器:标准查询解析器、DisMax 查询解析器,扩展 DisMax 查询解析器(eDisMax)。
 
 
在solr查询时,使用debugQuery可以打印出其打分的详细信息以便我们能够正确的分析:
 
 
"1046888": "
26.279617 = sum of:
  0.9810601 = sum of:
    0.1401725 = weight(text:女士 in 431) [DefaultSimilarity], result of:
      0.1401725 = score(doc=431,freq=2.0), product of:
        0.3656968 = queryWeight, product of:
          1.4455243 = idf(docFreq=37139, maxDocs=57987)
          0.25298557 = queryNorm
        0.3833025 = fieldWeight in 431, product of:
          1.4142135 = tf(freq=2.0), with freq of:
            2.0 = termFreq=2.0
          1.4455243 = idf(docFreq=37139, maxDocs=57987)
          0.1875 = fieldNorm(doc=431)
    0.8408876 = weight(text:手提包 in 431) [DefaultSimilarity], result of:
      0.8408876 = score(doc=431,freq=2.0), product of:
        0.89569205 = queryWeight, product of:
          3.5404868 = idf(docFreq=4570, maxDocs=57987)
          0.25298557 = queryNorm
        0.9388133 = fieldWeight in 431, product of:
          1.4142135 = tf(freq=2.0), with freq of:
            2.0 = termFreq=2.0
          3.5404868 = idf(docFreq=4570, maxDocs=57987)
          0.1875 = fieldNorm(doc=431)
  25.298557 = FunctionQuery(map(int(psfixstock),0.0,0.0,const(0))), product of:
    100.0 = map(int(psfixstock)=1,min=0.0,max=0.0,target=const(0))
    1.0 = boost
    0.25298557 = queryNorm
",
  
 
女士手提包,搜索词拆分成两个词元:“女士” “手提包”,q.op默认为OR(通过设置mm的值可以影响该属性),
 
 
idf为出现的频率,单独搜索“女士”总条目数37139,单独搜索“手提包”总条目数4570,出现频次越多就越不重要,idf的计算公式:
 
 
idf(t) = 1 + log (numDocs / (docFreq +1))
  
 
 
termFreq=2.0,tf的计算公式,2的1/2次方,得出1.414:
 
 
tf(t in d) = numTermOccurrencesInDocument 1/2
 
 
 
fieldNorm取决于匹配的文档field总数,大概在29个左右(由于查询中并没有设置boost),计算公式:
 
lengthNorm(field) = (1.0 / Math.sqrt(numTerms))
 
 
 
queryNorm,用来计算每个查询条目的方差和,使得不同的query之间的分数可以进行比较:
 
写道
queryNorm(q) = 1 / (sumOfSquaredWeights )
sumOfSquaredWeights = q.getBoost()2 • ∑ ( idf(t) • t.getBoost() )2
 
 
Solr Copy Field对打分的影响
 
 
如果使用了solr中的copyfield,会对打分造成什么影响?copyfield,solr允许将不同的字段copy到一个字段中,搜索只需要搜索拷贝字段即可,当然这样会造成内容中包含非常多的搜索词。
 
根据在*上的回答,如果要设置各自字段的boost,就不能使用统一的copyfield,或者将copyfield进行分组:
 
 
 
当前我们设置的默认df(default field)为<str name="df">text</str>,整个字段,当前我们可以通过更改qf的方式来做自定义boost,
 
SearchText, SearchText2^3, SearchText3^10, SearchText4^100
 
 
另一种说法,在solr中支持的多值域(multiValued)其实也就是copyfield,同一个field对应多个value。当一个文档中出现同名的多值域时,倒排索引和项向量都会在逻辑上将这些词的词汇单元附加进去。当对多值域进行存储的时候,它们在文档中的存储顺序是分离的,当在搜索期间对文档进行检索时,会发现多个field实例,最后该field的boost如何计算?使用每一个值域的boost相乘。
 
使用Query Field
 
 
我们设置query field,将下面的三个条件作为筛选条件,并设置其boost权重:
 
 
      <str name="qf">brand_name^0.9 category_name^0.8 product_name^2.0</str>
 
 
 
此时我们查询 “胸饰”,从打开debugQuery,可以看到其中的详细评分:
 
 
"debug": { "rawquerystring": "胸饰", "querystring": "胸饰", "parsedquery": "(+DisjunctionMaxQuery((brand_name:胸饰^0.9 | category_name:胸饰^0.8 | product_name:胸饰^2.0)) FunctionQuery(map(int(psfixstock),0.0,0.0,const(0),const(100))))/no_coord", "parsedquery_toString": "+(brand_name:胸饰^0.9 | category_name:胸饰^0.8 | product_name:胸饰^2.0) map(int(psfixstock),0.0,0.0,const(0),const(100))",
 
 
 
我们可以定义多个 requestHandler,用来专门处理多种类型,例如模糊查询,根据商品id定位商品,后端的内部查询,将它们分开这样就可以完成不同的查询了。
 
 
 
  • 理解和学习Solr的score机制
            
    
    博客分类: solr&lucene solr打分
  • 大小: 42.8 KB
  • 理解和学习Solr的score机制
            
    
    博客分类: solr&lucene solr打分
  • 大小: 2.7 KB
相关标签: solr 打分