R语言柱状图排序和x轴上的标签倾斜操作
程序员文章站
2022-06-19 15:22:29
r语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是ggplot2包里面的geom_bar此处用的是字符变量 统计其各频数,然后做出其柱状图。(横轴上的标签显示不全)t...
r语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是ggplot2包里面的geom_bar
此处用的是字符变量 统计其各频数,然后做出其柱状图。(横轴上的标签显示不全)
t <- sort(table(dat1$l), decreasing = true) #将频数表进行排序 r <- barplot(t, col = "blue", main = "柱状图", ylim = c(0,12), names.arg = dimnames(t) #画字符变量的柱状图 tmp <- as.vector(t) #将频数变成一个向量 text(r, tmp, label = tmp, pos = 3) #加柱子上面的标签
或用ggplot2包 (目前仍没有给柱子上加数字标签)
library(ggplot2) #加载ggplot2包 reorder_size <- function(x) { factor(x, levels = names(sort(table(x)))) } #自定义函数,获取因子型变量的因子类型 p <- ggplot(dat3, aes(reorder_size(lai))) + #用因子变量做基础底图,也可直接用reorder排序 geom_bar(fill = "blue") + #画柱状图 theme(axis.text.x = element_text(angle = 45, hjust = 0.5, vjust = 0.5)) + #让横轴上的标签倾斜45度 xlab("柱状图") #给x轴加标签
补充:r 语言条形图,解决x轴文字排序问题
数据结果的图形展示,r代码,《r数据科学》是个好东西
数据格式如下:
term | category | pval |
neutrophil chemotaxis | biological_process | 1.68e-09 |
innate immune response | biological_process | 3.35e-09 |
complement activation, classical pathway | biological_process | 1.14e-08 |
negative regulation of endopeptidase activity | biological_process | 4.43e-08 |
collagen fibril organization | biological_process | 4.43e-08 |
blood coagulation | biological_process | 1.29e-07 |
proteolysis involved in cellular protein catabolic process | biological_process | 1.56e-07 |
proteolysis | biological_process | 1.13e-06 |
leukocyte migration involved in inflammatory response | biological_process | 1.47e-06 |
peptide cross-linking | biological_process | 1.47e-06 |
extracellular space | cellular_component | 8.75e-40 |
collagen-containing extracellular matrix | cellular_component | 2.08e-26 |
extracellular matrix | cellular_component | 5.72e-11 |
lysosome | cellular_component | 6.09e-10 |
extracellular region | cellular_component | 6.58e-10 |
collagen trimer | cellular_component | 1.68e-09 |
cell surface | cellular_component | 2.80e-08 |
extracellular exosome | cellular_component | 2.34e-07 |
extrinsic component of external side of plasma membrane | cellular_component | 1.47e-06 |
sarcolemma | cellular_component | 3.16e-06 |
作图要求:x轴为term,颜色按categroy分类、并且pval由小到大排序
代码:
#openxlsx读入为data.frame class(data) #转换 library(tidyverse) godata<-as_tibble(godata) class(godata) #原始数据筛选(category,term,pval)散列,按照category,-log10(pval)排序 data<-godata%>%select(category,term,pval)%>%arrange(category,desc(-log10(pval))) #画图时改变geom_bar的自动排序 data$term<-factor(data$term,levels = unique(data$term),ordered = t) #作图 ggplot(data)+ geom_bar(aes(x=term,y=-log10(pval),fill=category),stat = 'identity')+ coord_flip()
结果:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。