欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Leetcode-并查集/BFS/DFS-399. 除法求值

程序员文章站 2022-06-19 14:56:41
题目:给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。返回 所有问题的答案 。如果存在某个无法确定的答...

题目:

给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。

另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。

返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。

 

注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。

 

示例 1:

输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
示例 2:

输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:

输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
 

提示:

1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj 由小写英文字母与数字组成

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/evaluate-division
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解:

一开始只想到DFS做法,把并查集全忘了,此处记录一下官方带权值的并查集做法

代码:

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Solution {

    public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
        int equationsSize = equations.size();

        UnionFind unionFind = new UnionFind(2 * equationsSize);
        // 第 1 步:预处理,将变量的值与 id 进行映射,使得并查集的底层使用数组实现,方便编码
        Map<String, Integer> hashMap = new HashMap<>(2 * equationsSize);
        int id = 0;
        for (int i = 0; i < equationsSize; i++) {
            List<String> equation = equations.get(i);
            String var1 = equation.get(0);
            String var2 = equation.get(1);

            if (!hashMap.containsKey(var1)) {
                hashMap.put(var1, id);
                id++;
            }
            if (!hashMap.containsKey(var2)) {
                hashMap.put(var2, id);
                id++;
            }
            unionFind.union(hashMap.get(var1), hashMap.get(var2), values[i]);
        }

        // 第 2 步:做查询
        int queriesSize = queries.size();
        double[] res = new double[queriesSize];
        for (int i = 0; i < queriesSize; i++) {
            String var1 = queries.get(i).get(0);
            String var2 = queries.get(i).get(1);

            Integer id1 = hashMap.get(var1);
            Integer id2 = hashMap.get(var2);

            if (id1 == null || id2 == null) {
                res[i] = -1.0d;
            } else {
                res[i] = unionFind.isConnected(id1, id2);
            }
        }
        return res;
    }

    private class UnionFind {

        private int[] parent;

        /**
         * 指向的父结点的权值
         */
        private double[] weight;


        public UnionFind(int n) {
            this.parent = new int[n];
            this.weight = new double[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
                weight[i] = 1.0d;
            }
        }

        public void union(int x, int y, double value) {
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) {
                return;
            }

            parent[rootX] = rootY;
          	// 关系式的推导请见「参考代码」下方的示意图
            weight[rootX] = weight[y] * value / weight[x];
        }

        /**
         * 路径压缩
         *
         * @param x
         * @return 根结点的 id
         */
        public int find(int x) {
            if (x != parent[x]) {
                int origin = parent[x];
                parent[x] = find(parent[x]);
                weight[x] *= weight[origin];
            }
            return parent[x];
        }

        public double isConnected(int x, int y) {
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) {
                return weight[x] / weight[y];
            } else {
                return -1.0d;
            }
        }
    }
}
class Solution {
    public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
        int nvars = 0;
        Map<String, Integer> variables = new HashMap<String, Integer>();

        int n = equations.size();
        for (int i = 0; i < n; i++) {
            if (!variables.containsKey(equations.get(i).get(0))) {
                variables.put(equations.get(i).get(0), nvars++);
            }
            if (!variables.containsKey(equations.get(i).get(1))) {
                variables.put(equations.get(i).get(1), nvars++);
            }
        }
        int[] f = new int[nvars];
        double[] w = new double[nvars];
        Arrays.fill(w, 1.0);
        for (int i = 0; i < nvars; i++) {
            f[i] = i;
        }

        for (int i = 0; i < n; i++) {
            int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));
            merge(f, w, va, vb, values[i]);
        }
        int queriesCount = queries.size();
        double[] ret = new double[queriesCount];
        for (int i = 0; i < queriesCount; i++) {
            List<String> query = queries.get(i);
            double result = -1.0;
            if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {
                int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));
                int fa = findf(f, w, ia), fb = findf(f, w, ib);
                if (fa == fb) {
                    result = w[ia] / w[ib];
                }
            }
            ret[i] = result;
        }
        return ret;
    }

    public void merge(int[] f, double[] w, int x, int y, double val) {
        int fx = findf(f, w, x);
        int fy = findf(f, w, y);
        f[fx] = fy;
        w[fx] = val * w[y] / w[x];
    }

    public int findf(int[] f, double[] w, int x) {
        if (f[x] != x) {
            int father = findf(f, w, f[x]);
            w[x] = w[x] * w[f[x]];
            f[x] = father;
        }
        return f[x];
    }
}

 

 

说明:代码 weight[rootX] = weight[y] * value / weight[x]; 的推导过程,主要需要明白各个变量的含义,由两条路径有向边的权值乘积相等得到相等关系,然后做等价变换即可。

Leetcode-并查集/BFS/DFS-399. 除法求值

复杂度分析:

时间复杂度:O((N + Q)\log A)

构建并查集 O(NlogA) ,这里 N 为输入方程 equations 的长度,每一次执行合并操作的时间复杂度是 O(\log A) 这里 A是 equations 里不同字符的个数;
查询并查集 O(QlogA),这里 Q 为查询数组 queries 的长度,每一次查询时执行「路径压缩」的时间复杂度是 O(\log A)
空间复杂度:O(A):创建字符与 id 的对应关系 hashMap 长度为 A,并查集底层使用的两个数组 parent 和 weight 存储每个变量的连通分量信息,parent 和 weight 的长度均为 A。

 

 

BFS解法:

class Solution {
    public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
        int nvars = 0;
        Map<String, Integer> variables = new HashMap<String, Integer>();

        int n = equations.size();
        for (int i = 0; i < n; i++) {
            if (!variables.containsKey(equations.get(i).get(0))) {
                variables.put(equations.get(i).get(0), nvars++);
            }
            if (!variables.containsKey(equations.get(i).get(1))) {
                variables.put(equations.get(i).get(1), nvars++);
            }
        }

        // 对于每个点,存储其直接连接到的所有点及对应的权值
        List<Pair>[] edges = new List[nvars];
        for (int i = 0; i < nvars; i++) {
            edges[i] = new ArrayList<Pair>();
        }
        for (int i = 0; i < n; i++) {
            int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));
            edges[va].add(new Pair(vb, values[i]));
            edges[vb].add(new Pair(va, 1.0 / values[i]));
        }

        int queriesCount = queries.size();
        double[] ret = new double[queriesCount];
        for (int i = 0; i < queriesCount; i++) {
            List<String> query = queries.get(i);
            double result = -1.0;
            if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {
                int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));
                if (ia == ib) {
                    result = 1.0;
                } else {
                    Queue<Integer> points = new LinkedList<Integer>();
                    points.offer(ia);
                    double[] ratios = new double[nvars];
                    Arrays.fill(ratios, -1.0);
                    ratios[ia] = 1.0;

                    while (!points.isEmpty() && ratios[ib] < 0) {
                        int x = points.poll();
                        for (Pair pair : edges[x]) {
                            int y = pair.index;
                            double val = pair.value;
                            if (ratios[y] < 0) {
                                ratios[y] = ratios[x] * val;
                                points.offer(y);
                            }
                        }
                    }
                    result = ratios[ib];
                }
            }
            ret[i] = result;
        }
        return ret;
    }
}

class Pair {
    int index;
    double value;

    Pair(int index, double value) {
        this.index = index;
        this.value = value;
    }
}

复杂度分析

时间复杂度:O(ML+Q\cdot(L+M)),其中 M为边的数量,Q 为询问的数量,L 为字符串的平均长度。构建图时,需要处理 M 条边,每条边都涉及到 O(L) 的字符串比较;处理查询时,每次查询首先要进行一次 O(L) 的比较,然后至多遍历 O(M) 条边。

空间复杂度:O(NL+M),其中 N 为点的数量,M 为边的数量,L 为字符串的平均长度。为了将每个字符串映射到整数,需要开辟空间为 O(NL) 的哈希表;随后,需要花费 O(M) 的空间存储每条边的权重;处理查询时,还需要 O(N)的空间维护访问队列。最终,总的复杂度为 O(NL+M+N) = O(NL+M)

 

DFS

自己写的,跟BFS思路差不多,深搜

class Solution {
    public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries)    {
        
        HashMap<String, HashMap<String,Double>> map=new HashMap<String, HashMap<String,Double>>(); 
        double[] res=new double[queries.size()];
        int all=0;
        for( int i = 0 ; i < equations.size() ; i++) 
        {
            String a =  equations.get(i).get(0);
            String b =  equations.get(i).get(1);
            double v =  values[i];
            
            HashMap<String,Double> divisor1 = new HashMap<String,Double>();   
            divisor1.put(b,v);
            HashMap<String,Double> divisor2 = new HashMap<String,Double>();   
            divisor2.put(a,1/v);
            if(!map.containsKey(a))
            {
                map.put(a,divisor1);
                all+=1;
            }
                HashMap<String,Double> av = map.get(a);
                av.put(b,v);
                map.put(a,av);
            if(!map.containsKey(b))
            {
                map.put(b,divisor2);all+=1;
            }
                HashMap bv = map.get(b);
                bv.put(a,1/v);
                map.put(b,bv);
        }
         for( int i = 0 ; i < queries.size() ; i++) 
        {            
            String a =  queries.get(i).get(0);
            String b =  queries.get(i).get(1);
            if(map.containsKey(a)&&map.containsKey(b))
            {
                if(map.get(a).containsKey(b))
                {
                    res[i]=map.get(a).get(b);
                }
                if(a.equals(b))
                {
                    res[i]=1.0;
                }
                else
                {
                    Stack<String> st = new Stack<String>();
                    st.push(a);
                    HashMap<String,Double> vis = new HashMap<String,Double>(); 
                    for(String key : map.keySet())
                    {
                        vis.put(key,-1.0);
                    }
                    vis.put(a,1.0);
                    while (!st.isEmpty() && vis.get(b) < 0) {
                        String x = st.pop();
                        for(String key : map.get(x).keySet())
                        {
                            String y = key;
                            double val = map.get(x).get(y);
                            if (vis.get(y) < 0) 
                            {
                                vis.put(y,vis.get(x) * val);
                                st.push(y);
                            }
                        }
                    }
                    res[i]=vis.get(b);
                }

            }
            else
            {
                res[i]=-1.0;
            }
            
        }

    return res;
       
        
    }
}

Floyd 算法
对于查询数量很多的情形,如果为每次查询都独立搜索一次,则效率会变低。为此,我们不妨对图先做一定的预处理,随后就可以在较短的时间内回答每个查询。

在本题中,我们可以使用Floyd 算法,预先计算出任意两点之间的距离

class Solution {
    public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
        int nvars = 0;
        Map<String, Integer> variables = new HashMap<String, Integer>();

        int n = equations.size();
        for (int i = 0; i < n; i++) {
            if (!variables.containsKey(equations.get(i).get(0))) {
                variables.put(equations.get(i).get(0), nvars++);
            }
            if (!variables.containsKey(equations.get(i).get(1))) {
                variables.put(equations.get(i).get(1), nvars++);
            }
        }
        double[][] graph = new double[nvars][nvars];
        for (int i = 0; i < nvars; i++) {
            Arrays.fill(graph[i], -1.0);
        }
        for (int i = 0; i < n; i++) {
            int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));
            graph[va][vb] = values[i];
            graph[vb][va] = 1.0 / values[i];
        }

        for (int k = 0; k < nvars; k++) {
            for (int i = 0; i < nvars; i++) {
                for (int j = 0; j < nvars; j++) {
                    if (graph[i][k] > 0 && graph[k][j] > 0) {
                        graph[i][j] = graph[i][k] * graph[k][j];
                    }
                }
            }
        }

        int queriesCount = queries.size();
        double[] ret = new double[queriesCount];
        for (int i = 0; i < queriesCount; i++) {
            List<String> query = queries.get(i);
            double result = -1.0;
            if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {
                int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));
                if (graph[ia][ib] > 0) {
                    result = graph[ia][ib];
                }
            }
            ret[i] = result;
        }
        return ret;
    }
}

 

Leetcode-并查集/BFS/DFS-399. 除法求值
 

 

本文地址:https://blog.csdn.net/qq_40421671/article/details/112274394

相关标签: # LeetCode