xv6系统Bootloader启动分析
Bootloader启动分析
参考xv6的附录B
https://github.com/ranxian/xv6-chinese/blob/master/content/AppendixB.md
计算机启动后硬件的动作
一直很好奇计算器按下电源后发生了什么?基本上分为三步
BIOS引导-》bootloader加载内核到内存-》控制权交给内核
源码在此https://github.com/mit-pdos/xv6-public/blob/master/bootasm.S
bootloader简易的实现及其编译
这里我们先看下如何19行代码实现一个简易的bootloader
计算机通电启动后 BIOS会从引导设备读取512个字节,如果在这512个字节的末尾检测到一个双字节“magic number”(0x55AA),则将这512个字节的数据作为代码加载并运行。这512个字节的数据就叫做bootloader。
这里使用19行代码实现一个小的操作系统并输出“Hello world!”的bootlaoder。
参考: http://50linesofco.de/post/2018-02-28-writing-an-x86-hello-world-bootloader-with-assembly
.code16 #告诉操作系统要用16位
.global init #设置启动点
init:
mov $msg, %si # loads the address of msg into si #把msg放入寄存器
mov $0xe, %ah # loads 0xe (function number for int 0x10) into ah #
print_char:
lodsb # loads the byte from the address in si into al and increments si
cmp $0, %al # compares content in AL with zero
je done # if al == 0, go to "done"
int $0x10 # 使用中断将字符输出到屏幕
jmp print_char # repeat with next byte
done:
hlt # stop execution
msg: .asciz "Hello world!"
编译出的bootloader没有512字节
as -o boot.o boot.s
ld -o boot.bin --oformat binary -e init boot.o
ls -lh .
3 boot.bin
784 boot.o
152 boot.s
使用0填充至510字节 并在末尾加上magic number 0xaa55
.fill 510-(.-init), 1, 0 # add zeroes to make it 510 bytes long
.word 0xaa55 # magic bytes that tell BIOS that this is bootable
as -o boot.o boot.s
ld -o boot.bin --oformat binary -e init boot.o
ls -lh .
512 boot.bin
1.3k boot.o
176 boot.s
使用qemu调起bootloader
sudo apt-get install qemu
qemu-system-x86_64 boot.bin
BIOS引导
CPU通电后的第一条指令位于内存F000:FFF0位置。此时CPU工作于实时模式,该模式会通过段寄存器CS与指令寄存器IP共同寻找指令所在的物理地址。计算方法是CS里的内容左移4位再加上IP里的内容,得到实际物理地址,这里BIOS第一条指令的物理地址是0xffff0。这条指令是:
ljmp $0xf000,$0xe05b
跳转到物理地址0xfe05b位置,执行后续的指令。这个也比较好理解,因为0xffff0比较接近0xfffff这个物理内存地址的最顶端,这么少的内存空间做不了什么事,这时候就转移一下代码的所在位置。然后,BIOS会进行一系列的硬件初始化工作。当这些工作都完成了,计算机的硬件都处在一个基础的就绪状态,就可以进行操作系统的引导了。xv6作为一个精简的unix操作系统,其boot loader在可启动磁盘上的第一个扇区,即第一个512字节的区域。BIOS会把这段代码拷贝到物理地址0x7c00到0x7dff的内存空间中。这段代码就叫做boot loader,主要用于引导操作系统内核。
boot loader
BIOS设置cs寄存器为0x0,ip寄存器为0x7c00,开始执行boot loader程序。该程序可分为两部分,第一部分是汇编语言编写,一部分是c语言编写:
基本流程如下:
CPU初始化操作
打开A20Gate
GDT的设置
**实模式切换为32位的保护模式(内存管理,进程管理,硬件管理)现在主流计算都用的是分段式管理
初始化栈寄存器
跳转到boot/main.c
#include <inc/mmu.h>
# Start the CPU: switch to 32-bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs=0 %ip=7c00.
.set PROT_MODE_CSEG, 0x8 # kernel code segment selector
.set PROT_MODE_DSEG, 0x10 # kernel data segment selector
.set CR0_PE_ON, 0x1 # protected mode enable flag
.globl start
start:
.code16 # Assemble for 16-bit mode
cli # Disable interrupts
cld # String operations increment
# Set up the important data segment registers (DS, ES, SS).
xorw %ax,%ax # Segment number zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
# Enable A20:
# For backwards compatibility with the earliest PCs, physical
# address line 20 is tied low, so that addresses higher than
# 1MB wrap around to zero by default. This code undoes this.
seta20.1:
inb $0x64,%al #从端口取一个字节的数据 # Wait for not busy
testb $0x2,%al
jnz seta20.1 #不为0则跳转
movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64
# 向0x64写入命令0xd1,该命令用于指示即将向键盘控制器的输出端口写一个字节的数据。
seta20.2:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20.2
movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60
# 再检查0x64,判断键盘控制器是否忙碌。等不忙碌后,就可以向0x60写入数据0xdf。该数据代表开A20。
# Swit from real to protected mode, using a bootstrap GDT
# and segment translation that makes virtual addresses ch
# identical to their physical addresses, so that the
# effective memory map does not change during the switch.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE_ON, %eax
movl %eax, %cr0
# Jump to next instruction, but in 32-bit code segment.
# Switches processor into 32-bit mode.
ljmp $PROT_MODE_CSEG, $protcseg
.code32 # Assemble for 32-bit mode
protcseg:
# Set up the protected-mode data segment registers
movw $PROT_MODE_DSEG, %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
movw %ax, %ss # -> SS: Stack Segment
# Set up the stack pointer and call into C.
movl $start, %esp
call bootmain
# If bootmain returns (it shouldn't), loop.
spin:
jmp spin
#GDT全局描述符表 操作部分
# Bootstrap GDT
.p2align 2 # force 4 byte alignment
gdt:
SEG_NULL # null seg
SEG(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG(STA_W, 0x0, 0xffffffff) # data seg
gdtdesc:
.word 0x17 # sizeof(gdt) - 1
.long gdt # address gdt
把kernel加载到内存
这部分boot/main.c代码的主要作用是加载内核文件(elf)到内存中。
加载ELF头部与程序头表
kernel是一个ELF格式的可执行文件,它遵守标准的ELF格式。我们暂时关心的就是ELF头部与程序头表,通过把它们从磁盘里加载到内存中,就可以让内核正式接管计算机了!
kernel文件的ELF头部从启动磁盘的第二个扇区开始。前面已经说到,第一个扇区512字节就是boot loader。ELF头部与程序头表大小是4KB。
内存管理单元(英语:memory management unit,缩写为MMU)
#include <inc/x86.h>
#include <inc/elf.h>
/**********************************************************************
* This a dirt simple boot loader, whose sole job is to boot
* an ELF kernel image from the first IDE hard disk.
*
* DISK LAYOUT
* * This program(boot.S and main.c) is the bootloader. It should
* be stored in the first sector of the disk.
*
* * The 2nd sector onward holds the kernel image.
*
* * The kernel image must be in ELF format.
*
* BOOT UP STEPS
* * when the CPU boots it loads the BIOS into memory and executes it
*
* * the BIOS intializes devices, sets of the interrupt routines, and
* reads the first sector of the boot device(e.g., hard-drive)
* into memory and jumps to it.
*
* * Assuming this boot loader is stored in the first sector of the
* hard-drive, this code takes over...
*
* * control starts in boot.S -- which sets up protected mode,
* and a stack so C code then run, then calls bootmain()
*
* * bootmain() in this file takes over, reads in the kernel and jumps to it.
**********************************************************************/
#define SECTSIZE 512
#define ELFHDR ((struct Elf *) 0x10000) // scratch space
void readsect(void*, uint32_t);
void readseg(uint32_t, uint32_t, uint32_t);
void
bootmain(void)
{
struct Proghdr *ph, *eph;
// read 1st page off disk
readseg((uint32_t) ELFHDR, SECTSIZE*8, 0);
// is this a valid ELF?
if (ELFHDR->e_magic != ELF_MAGIC)
goto bad;
//Program Header Table。这个表格存放着程序中所有段的信息。通过这个表我们才能找到要执行的代码段,数据段等等。所以我们要先获得这个表。
// load each program segment (ignores ph flags)
ph = (struct Proghdr *) ((uint8_t *) ELFHDR + ELFHDR->e_phoff);//程序头表
eph = ph + ELFHDR->e_phnum;//e_phnum 程序头表的表项的数目
for (; ph < eph; ph++)
// p_pa is the load address of this segment (as well
// as the physical address)
readseg(ph->p_pa, ph->p_memsz, ph->p_offset);
// call the entry point from the ELF header
// note: does not return!
((void (*)(void)) (ELFHDR->e_entry))();//系统转移控制权到的虚拟地址,从而开始进程。
bad:
outw(0x8A00, 0x8A00);
outw(0x8A00, 0x8E00);
while (1)
/* do nothing */;
}
// Read 'count' bytes at 'offset' from kernel into physical address 'pa'.
// Might copy more than asked
void
readseg(uint32_t pa, uint32_t count, uint32_t offset)
{
uint32_t end_pa;
end_pa = pa + count;
// round down to sector boundary
pa &= ~(SECTSIZE - 1);
// translate from bytes to sectors, and kernel starts at sector 1
offset = (offset / SECTSIZE) + 1;
// If this is too slow, we could read lots of sectors at a time.
// We'd write more to memory than asked, but it doesn't matter --
// we load in increasing order.
while (pa < end_pa) {
// Since we haven't enabled paging yet and we're using
// an identity segment mapping (see boot.S), we can
// use physical addresses directly. This won't be the
// case once JOS enables the MMU.
readsect((uint8_t*) pa, offset);
pa += SECTSIZE;
offset++;
}
}
void
waitdisk(void)
{
// wait for disk reaady
while ((inb(0x1F7) & 0xC0) != 0x40)
/* do nothing */;
}
void
readsect(void *dst, uint32_t offset)
{
// wait for disk to be ready
waitdisk();
outb(0x1F2, 1); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> 8);
outb(0x1F5, offset >> 16);
outb(0x1F6, (offset >> 24) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors
// wait for disk to be ready
waitdisk();
// read a sector
insl(0x1F0, dst, SECTSIZE/4);
}
先给出IDE的IO接口对应的寄存器参数:
1F2 - 扇区计数。这里面存放你要操作的扇区数量
1F3 - 扇区LBA地址的0-7位
1F4 - 扇区LBA地址的8-15位
1F5 - 扇区LBA地址的16-23位
1F6 (低4位) - 扇区LBA地址的24-27位
1F6 (第4位) - 0表示选择主盘,1表示选择从盘
1F6 (5-7位) - 必须为1
1F7 (写) - 命令寄存器
1F7 (读) - 状态寄存器
bit 7 = 1 控制器忙
bit 6 = 1 驱动器就绪
bit 5 = 1 设备错误
bit 4 N/A
bit 3 = 1 扇区缓冲区错误
bit 2 = 1 磁盘已被读校验
bit 1 N/A
bit 0 = 1 上一次命令执行失败
打印寄存器 这里就可以看到xv6使用的寄存器和当前对应的值
(gdb) info reg
eax 0x112800 1124352
ecx 0x0 0
edx 0x9d 157
ebx 0x10094 65684
esp 0x7bec 0x7bec
ebp 0x7bf8 0x7bf8
esi 0x10094 65684
edi 0x0 0
eip 0x10000c 0x10000c
eflags 0x46 [ PF ZF ]
cs 0x8 8
ss 0x10 16
ds 0x10 16
es 0x10 16
fs 0x10 16
gs 0x10 16
参考:
http://blog.csdn.net/qq_25426415/article/details/54583835
elf格式:https://mudongliang.github.io/2015/10/31/linuxelf.html