欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

xv6系统Bootloader启动分析

程序员文章站 2022-06-19 13:30:21
...

Bootloader启动分析

参考xv6的附录B
https://github.com/ranxian/xv6-chinese/blob/master/content/AppendixB.md

计算机启动后硬件的动作

一直很好奇计算器按下电源后发生了什么?基本上分为三步
BIOS引导-》bootloader加载内核到内存-》控制权交给内核
源码在此https://github.com/mit-pdos/xv6-public/blob/master/bootasm.S

bootloader简易的实现及其编译

这里我们先看下如何19行代码实现一个简易的bootloader

计算机通电启动后 BIOS会从引导设备读取512个字节,如果在这512个字节的末尾检测到一个双字节“magic number”(0x55AA),则将这512个字节的数据作为代码加载并运行。这512个字节的数据就叫做bootloader。
这里使用19行代码实现一个小的操作系统并输出“Hello world!”的bootlaoder。
参考: http://50linesofco.de/post/2018-02-28-writing-an-x86-hello-world-bootloader-with-assembly

.code16 #告诉操作系统要用16位
.global init #设置启动点

init:
  mov $msg, %si # loads the address of msg into si  #把msg放入寄存器
  mov $0xe, %ah # loads 0xe (function number for int 0x10) into ah  #
print_char:
  lodsb # loads the byte from the address in si into al and increments si
  cmp $0, %al # compares content in AL with zero
  je done # if al == 0, go to "done"
  int $0x10 # 使用中断将字符输出到屏幕
  jmp print_char # repeat with next byte
done:
  hlt # stop execution

msg: .asciz "Hello world!"

编译出的bootloader没有512字节

as -o boot.o boot.s
ld -o boot.bin --oformat binary -e init boot.o
ls -lh .
  3 boot.bin
784 boot.o
152 boot.s

使用0填充至510字节 并在末尾加上magic number 0xaa55

.fill 510-(.-init), 1, 0 # add zeroes to make it 510 bytes long
.word 0xaa55 # magic bytes that tell BIOS that this is bootable
as -o boot.o boot.s
ld -o boot.bin --oformat binary -e init boot.o
ls -lh .
 512 boot.bin
1.3k boot.o
 176 boot.s

使用qemu调起bootloader

sudo apt-get install qemu
qemu-system-x86_64 boot.bin

BIOS引导

CPU通电后的第一条指令位于内存F000:FFF0位置。此时CPU工作于实时模式,该模式会通过段寄存器CS与指令寄存器IP共同寻找指令所在的物理地址。计算方法是CS里的内容左移4位再加上IP里的内容,得到实际物理地址,这里BIOS第一条指令的物理地址是0xffff0。这条指令是:

ljmp   $0xf000,$0xe05b

  跳转到物理地址0xfe05b位置,执行后续的指令。这个也比较好理解,因为0xffff0比较接近0xfffff这个物理内存地址的最顶端,这么少的内存空间做不了什么事,这时候就转移一下代码的所在位置。然后,BIOS会进行一系列的硬件初始化工作。当这些工作都完成了,计算机的硬件都处在一个基础的就绪状态,就可以进行操作系统的引导了。xv6作为一个精简的unix操作系统,其boot loader在可启动磁盘上的第一个扇区,即第一个512字节的区域。BIOS会把这段代码拷贝到物理地址0x7c00到0x7dff的内存空间中。这段代码就叫做boot loader,主要用于引导操作系统内核。

boot loader

  BIOS设置cs寄存器为0x0,ip寄存器为0x7c00,开始执行boot loader程序。该程序可分为两部分,第一部分是汇编语言编写,一部分是c语言编写:
  基本流程如下:

   CPU初始化操作
  打开A20Gate
  GDT的设置
  **实模式切换为32位的保护模式(内存管理,进程管理,硬件管理)现在主流计算都用的是分段式管理
  初始化栈寄存器
  跳转到boot/main.c
#include <inc/mmu.h>

# Start the CPU: switch to 32-bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs=0 %ip=7c00.

.set PROT_MODE_CSEG, 0x8         # kernel code segment selector
.set PROT_MODE_DSEG, 0x10        # kernel data segment selector
.set CR0_PE_ON,      0x1         # protected mode enable flag

.globl start
start:
  .code16                     # Assemble for 16-bit mode
  cli                         # Disable interrupts
  cld                         # String operations increment

  # Set up the important data segment registers (DS, ES, SS).
  xorw    %ax,%ax             # Segment number zero
  movw    %ax,%ds             # -> Data Segment
  movw    %ax,%es             # -> Extra Segment
  movw    %ax,%ss             # -> Stack Segment

  # Enable A20:
  #   For backwards compatibility with the earliest PCs, physical
  #   address line 20 is tied low, so that addresses higher than
  #   1MB wrap around to zero by default.  This code undoes this.
seta20.1:
  inb     $0x64,%al   #从端口取一个字节的数据            # Wait for not busy
  testb   $0x2,%al
  jnz     seta20.1   #不为0则跳转

  movb    $0xd1,%al               # 0xd1 -> port 0x64
  outb    %al,$0x64
# 向0x64写入命令0xd1,该命令用于指示即将向键盘控制器的输出端口写一个字节的数据。
seta20.2:
  inb     $0x64,%al               # Wait for not busy
  testb   $0x2,%al
  jnz     seta20.2

  movb    $0xdf,%al               # 0xdf -> port 0x60
  outb    %al,$0x60
# 再检查0x64,判断键盘控制器是否忙碌。等不忙碌后,就可以向0x60写入数据0xdf。该数据代表开A20。


  # Swit from real to protected mode, using a bootstrap GDT
  # and segment translation that makes virtual addresses ch
  # identical to their physical addresses, so that the 
  # effective memory map does not change during the switch.
  lgdt    gdtdesc
  movl    %cr0, %eax
  orl     $CR0_PE_ON, %eax
  movl    %eax, %cr0

  # Jump to next instruction, but in 32-bit code segment.
  # Switches processor into 32-bit mode.
  ljmp    $PROT_MODE_CSEG, $protcseg

  .code32                     # Assemble for 32-bit mode
protcseg:
  # Set up the protected-mode data segment registers
  movw    $PROT_MODE_DSEG, %ax    # Our data segment selector
  movw    %ax, %ds                # -> DS: Data Segment
  movw    %ax, %es                # -> ES: Extra Segment
  movw    %ax, %fs                # -> FS
  movw    %ax, %gs                # -> GS
  movw    %ax, %ss                # -> SS: Stack Segment

  # Set up the stack pointer and call into C.
  movl    $start, %esp
  call bootmain

  # If bootmain returns (it shouldn't), loop.
spin:
  jmp spin  
#GDT全局描述符表 操作部分
# Bootstrap GDT
.p2align 2                                # force 4 byte alignment
gdt:
  SEG_NULL              # null seg
  SEG(STA_X|STA_R, 0x0, 0xffffffff) # code seg
  SEG(STA_W, 0x0, 0xffffffff) # data seg

gdtdesc:
  .word   0x17                            # sizeof(gdt) - 1
  .long   gdt                             # address gdt

把kernel加载到内存

这部分boot/main.c代码的主要作用是加载内核文件(elf)到内存中。

加载ELF头部与程序头表
  kernel是一个ELF格式的可执行文件,它遵守标准的ELF格式。我们暂时关心的就是ELF头部与程序头表,通过把它们从磁盘里加载到内存中,就可以让内核正式接管计算机了!

  kernel文件的ELF头部从启动磁盘的第二个扇区开始。前面已经说到,第一个扇区512字节就是boot loader。ELF头部与程序头表大小是4KB。
  
  内存管理单元(英语:memory management unit,缩写为MMU)

#include <inc/x86.h>
#include <inc/elf.h>

/**********************************************************************
 * This a dirt simple boot loader, whose sole job is to boot
 * an ELF kernel image from the first IDE hard disk.
 *
 * DISK LAYOUT
 *  * This program(boot.S and main.c) is the bootloader.  It should
 *    be stored in the first sector of the disk.
 *
 *  * The 2nd sector onward holds the kernel image.
 *
 *  * The kernel image must be in ELF format.
 *
 * BOOT UP STEPS
 *  * when the CPU boots it loads the BIOS into memory and executes it
 *
 *  * the BIOS intializes devices, sets of the interrupt routines, and
 *    reads the first sector of the boot device(e.g., hard-drive)
 *    into memory and jumps to it.
 *
 *  * Assuming this boot loader is stored in the first sector of the
 *    hard-drive, this code takes over...
 *
 *  * control starts in boot.S -- which sets up protected mode,
 *    and a stack so C code then run, then calls bootmain()
 *
 *  * bootmain() in this file takes over, reads in the kernel and jumps to it.
 **********************************************************************/

#define SECTSIZE    512
#define ELFHDR      ((struct Elf *) 0x10000) // scratch space

void readsect(void*, uint32_t);
void readseg(uint32_t, uint32_t, uint32_t);

void
bootmain(void)
{
    struct Proghdr *ph, *eph;

    // read 1st page off disk
    readseg((uint32_t) ELFHDR, SECTSIZE*8, 0);

    // is this a valid ELF?
    if (ELFHDR->e_magic != ELF_MAGIC)
        goto bad;
    //Program Header Table。这个表格存放着程序中所有段的信息。通过这个表我们才能找到要执行的代码段,数据段等等。所以我们要先获得这个表。
    // load each program segment (ignores ph flags)
    ph = (struct Proghdr *) ((uint8_t *) ELFHDR + ELFHDR->e_phoff);//程序头表
    eph = ph + ELFHDR->e_phnum;//e_phnum 程序头表的表项的数目
    for (; ph < eph; ph++)
        // p_pa is the load address of this segment (as well
        // as the physical address)
        readseg(ph->p_pa, ph->p_memsz, ph->p_offset);

    // call the entry point from the ELF header
    // note: does not return!
    ((void (*)(void)) (ELFHDR->e_entry))();//系统转移控制权到的虚拟地址,从而开始进程。

bad:
    outw(0x8A00, 0x8A00);
    outw(0x8A00, 0x8E00);
    while (1)
        /* do nothing */;
}

// Read 'count' bytes at 'offset' from kernel into physical address 'pa'.
// Might copy more than asked
void
readseg(uint32_t pa, uint32_t count, uint32_t offset)
{
    uint32_t end_pa;

    end_pa = pa + count;

    // round down to sector boundary
    pa &= ~(SECTSIZE - 1);

    // translate from bytes to sectors, and kernel starts at sector 1
    offset = (offset / SECTSIZE) + 1;

    // If this is too slow, we could read lots of sectors at a time.
    // We'd write more to memory than asked, but it doesn't matter --
    // we load in increasing order.
    while (pa < end_pa) {
        // Since we haven't enabled paging yet and we're using
        // an identity segment mapping (see boot.S), we can
        // use physical addresses directly.  This won't be the
        // case once JOS enables the MMU.
        readsect((uint8_t*) pa, offset);
        pa += SECTSIZE;
        offset++;
    }
}

void
waitdisk(void)
{
    // wait for disk reaady
    while ((inb(0x1F7) & 0xC0) != 0x40)
        /* do nothing */;
}

void
readsect(void *dst, uint32_t offset)
{
    // wait for disk to be ready
    waitdisk();

    outb(0x1F2, 1);     // count = 1
    outb(0x1F3, offset);
    outb(0x1F4, offset >> 8);
    outb(0x1F5, offset >> 16);
    outb(0x1F6, (offset >> 24) | 0xE0);
    outb(0x1F7, 0x20);  // cmd 0x20 - read sectors

    // wait for disk to be ready
    waitdisk();

    // read a sector
    insl(0x1F0, dst, SECTSIZE/4);
}

先给出IDE的IO接口对应的寄存器参数:
1F2 - 扇区计数。这里面存放你要操作的扇区数量
1F3 - 扇区LBA地址的0-7位
1F4 - 扇区LBA地址的8-15位
1F5 - 扇区LBA地址的16-23位
1F6 (低4位) - 扇区LBA地址的24-27位
1F6 (第4位) - 0表示选择主盘,1表示选择从盘
1F6 (5-7位) - 必须为1
1F7 (写) - 命令寄存器
1F7 (读) - 状态寄存器
bit 7 = 1 控制器忙
bit 6 = 1 驱动器就绪
bit 5 = 1 设备错误
bit 4 N/A
bit 3 = 1 扇区缓冲区错误
bit 2 = 1 磁盘已被读校验
bit 1 N/A
bit 0 = 1 上一次命令执行失败


打印寄存器 这里就可以看到xv6使用的寄存器和当前对应的值
(gdb) info reg
eax 0x112800 1124352
ecx 0x0 0
edx 0x9d 157
ebx 0x10094 65684
esp 0x7bec 0x7bec
ebp 0x7bf8 0x7bf8
esi 0x10094 65684
edi 0x0 0
eip 0x10000c 0x10000c
eflags 0x46 [ PF ZF ]
cs 0x8 8
ss 0x10 16
ds 0x10 16
es 0x10 16
fs 0x10 16
gs 0x10 16

参考:
http://blog.csdn.net/qq_25426415/article/details/54583835

elf格式:https://mudongliang.github.io/2015/10/31/linuxelf.html