欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python:将iris数据通过近邻转化为图并展示出来

程序员文章站 2022-06-18 21:07:58
import numpy as npfrom sklearn import datasetsimport networkx as nxfrom scipy.spatial.distance import pdist, squareformimport matplotlib.pyplot as pltX, y = datasets.load_iris(return_X_y=True)N = X.shape[0]distlist = pdist(X,metric='euclidean')d....
import numpy as np
from sklearn import datasets
import networkx as nx
from scipy.spatial.distance import pdist, squareform
import matplotlib.pyplot as plt


X, y = datasets.load_iris(return_X_y=True)
N = X.shape[0]
distlist = pdist(X,metric='euclidean')
dist_Matrix = squareform(distlist)
simi_Matrix = np.zeros((N,N))
neiNum = 5

for i in range(N):
    ordidx = np.argsort(dist_Matrix[i,:])
    for j in range(neiNum+1):
        if i != ordidx[j]:
            simi_Matrix[i,ordidx[j]] = dist_Matrix[i, ordidx[j]]

G = nx.Graph()

for i in range(N):
    for j in range(N):
        if simi_Matrix[i,j] > 0:
            G.add_weighted_edges_from([(i,j,simi_Matrix[i,j])])

pos = nx.spring_layout(G)
# pos = nx.random_layout(G)
# pos = nx.circular_layout(G)
# pos = nx.shell_layout(G)

nx.draw(G,pos,node_color=y,with_labels=True,font_size=15,node_size=120)
plt.show()

 

本文地址:https://blog.csdn.net/DeniuHe/article/details/108410681

相关标签: Python学习