Linux之ARM(MX6U)裸机之I.MX6ULL启动方式详解
Linux之ARM(MX6U)裸机之I.MX6ULL启动方式--启动设备的选择
1.启动方式选择
BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置来选择 BOOT 方式。 BOOT_MODE[1:0]的值是可以改变的,有两种方式,一种是改写 eFUSE(熔丝),一种是修改相应的 GPIO 高低电平。第一种修改 eFUSE 的方式只能修改一次,后面就不能再修改了,所以我们不使用。我们使用的是通过修改 BOOT_MODE[1:0]对应的 GPIO 高低电平来选择启动方式,所有的开发板都使用的这种方式, I.MX6U 有一个 BOOT_MODE1 引脚和BOOT_MODE0 引脚,这两个引脚对应这 BOOT_MODE[1:0]。 I.MX6U-ALPHA 开发板的这两
个引脚原理图如图
其中 BOOT_MODE1 和 BOOT_MODE0 在芯片内部是有 100KΩ下拉电阻的,所以默认是0。 BOOT_MODE1 和 BOOT_MODE0 这两个引脚我们也接到了底板的拨码开关上,这样我们就可以通过拨码开关来控制 BOOT_MODE1 和 BOOT_MODE0 的高低电平。以 BOOT_MODE1为例,当我们把 BOOT_CFG 的第一个开关拨到“ON”的时候,就相当于 BOOT_MODE1 引脚通过 R88 这个 10K 电阻接到了 3.3V 电源,芯片内部的 BOOT_MODE1 又是 100K 下拉电阻接地,因此此时 BOOT_MODE1 的电压就是 100/(10+100)*3.3V= 3V,这是个高电平, 因此BOOT_CFG 的中的 8 个开关拨到“ON”就是高电平,拨到“OFF”就是低电平。
而 I.MX6U 有四个 BOOT 模式,这四个 BOOT 模式由 BOOT_MODE[1:0]来控制,也就是BOOT_MODE1 和 BOOT_MODE0 这两 IO, BOOT 模式配置如表所示:
BOOT_MODE[1:0] | BOOT类型 |
---|---|
00 | 从 FUSE 启动 |
01 | 串行下载 |
10 | 内部 BOOT 模式 |
11 | 保留 |
①.串行下载
当 BOOT_MODE1 为 0, BOOT_MODE0 为 1 的时候此模式使能,串行下载的意思就是可以通过 USB 或者 UART 将代码下载到板子上的外置存储设备中,我们可以使用 OTG1 这个 USB口向开发板上的 SD/EMMC、 NAND 等存储设备下载代码。我们需要将 BOOT_MODE1 拨到“OFF”,将 BOOT_MODE0 拨到“ON”。这个下载是需要用到 NXP 提供的一个软件,一般用来最终量产的时候将代码烧写到外置存储设备中的
②.内部BOOT模式
当 BOOT_MODE1 为 1, BOOT_MODE0 为 0 的时候此模式使能,在此模式下,芯片会执行内部的 boot ROM 代码,这段 boot ROM 代码会进行硬件初始化(一部分外设),然后从 boot 设备(就是存放代码的设备、比如 SD/EMMC、 NAND)中将代码拷贝出来复制到指定的 RAM 中,一般是 DDR。
2.BOOT ROM得初始化内容
当我们设置 BOOT 模式为“内部 BOOT 模式”以后, I.MX6U 内部的 boot ROM 代码就会执行,这个 boot ROM 代码都会做什么处理呢?首先肯定是初始化时钟, boot ROM 设置的系统时钟如图
BT_FREQ 模式为 0,可以看到, boot ROM 会将 I.MX6U 的内核时钟设置为396MHz, 也就是主频为 396Mhz。 System PLL=528Mhz, USB PLL=480MHz, AHB=132MHz,IPG=66MHz。
内部 boot ROM 为了加快执行速度会打开 MMU 和 Cache,下载镜像的时候 L1 ICache 会打开,验证镜像的时候 L1 DCache、 L2 Cache 和 MMU 都会打开。一旦镜像验证完成, boot ROM就会关闭 L1 DCache、 L2 Cache 和 MMU。
中断向量偏移会被设置到 boot ROM 的起始位置,当 boot ROM 启动了用户代码以后就可以重新设置中断向量偏移了。一般是重新设置到我们用户代码的开始地方
3.选择启动设备
当 BOOT_MODE 设置为内部 BOOT 模式以后,可以从以下设备中启动:
①、接到 EIM 接口的 CS0 上的 16 位 NOR Flash。
②、接到 EIM 接口的 CS0 上的 OneNAND Flash。
③、接到 GPMI 接口上的 MLC/SLC NAND Flash, NAND Flash 页大小支持 2KByte、 4KByte和 8KByte, 8 位宽。
④、 Quad SPI Flash。
⑤、接到 USDHC 接口上的 SD/MMC/eSD/SDXC/eMMC 等设备。
⑥、 SPI 接口的 EEPROM。
这些启动设备如何选择呢? I.MX6U 同样提供了 eFUSE 和 GPIO 配置两种, eFUSE 就不讲解了。我们重点看如何通过 GPIO 来选择启动设备,因为所有的 I.MX6U 开发板都是通过 GPIO来配置启动设备的。正如启动模式由BOOT_MODE[1:0]来选择一样,启动设备是通过BOOT_CFG1[7:0]、 BOOT_CFG2[7:0]和 BOOT_CFG4[7:0]这 24 个配置 IO,这 24 个配置 IO 刚好对应着 LCD 的 24 根数据线 LCD_DATA0~LCDDATA23,当启动完成以后这 24 个 IO 就可以作为 LCD 的数据线使用。这 24 根线和 BOOT_MODE1、 BOOT_MODE0 共同组成了 I.MX6U的启动选择引脚,如图
虽然有 24 个 IO,但是实际需要调整的只有那几个 IO,其它的 IO 全部下拉接地即可,也就是设置为 0。打开 I.MX6U-ALPHA 开发板的核心板原理图,这 24 个 IO 的默认设置如图
大部分的 IO 都接地了,只有几个 IO 接高,尤其是 BOOT_CFG4[7:0]这 8 个 IO 都 10K 电阻下拉接地,所以我们压根就不需要去关注 BOOT_CFG4[7:0]。我们需要重点关注的就只剩下了 BOOT_CFG2[7:0]和 BOOT_CFG1[7:0]这 16 个 IO。这 16 个配置 IO 含义在原理图的左侧已经贴出来了,如图
打开 I.MX6U-ALPHA 开发板的底板原理图,底板上启动设备选择拨码开关原理图如图
除 了 BOOT_MODE1 和 BOOT_MODE0 必 须 引 出 来 ,LCD_DATA3~LCDDATA7、 LCD_DATA11 这 6 个 IO 也被引出来了,可以通过拨码开关来设置其对应的高低电平,拨码开关拨到“ON”就是 1,拨到“OFF”就是 0。其中 LCD_DATA11 就是 BOOT_CFG2[3], LCD_DATA3~LCD_DATA7 就是 BOOT_CFG1[3]~BOOT_CFG1[7],这 6 个IO 的配置含义如表
BOOT IO 含义, I.MX6U-ALPHA 开发板从 SD 卡、 EMMC、 NAND 启动的时候拨码开关各个位设置方式如表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 启动设备 |
---|---|---|---|---|---|---|---|---|
0 | 1 | x | x | x | x | x | x | 串行下载,可以通过 USB 烧写镜像文件。 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | SD 卡启动。 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | EMMC 启动。 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | NAND FLASH 启动。 |
本文地址:https://blog.csdn.net/weixin_45309916/article/details/107891591