欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Redis实现布隆过滤器的方法及原理

程序员文章站 2022-06-17 21:03:50
布隆过滤器(bloom filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和...

布隆过滤器(bloom filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

本文将介绍布隆过滤器的原理以及redis如何实现布隆过滤器。

应用场景

1、50亿个电话号码,现有10万个电话号码,如何判断这10万个是否已经存在在50亿个之中?(可能方案:数据库,set, hyperloglog)
2、新闻客户端看新闻时,它会不断推荐新的内容,每次推荐时都要去重,那么如何实现推送去重?
3、爬虫url去重?
4、nosql数据库领域降低数据库的io请求数量?
5、邮箱系统的垃圾邮件过滤?

布隆过滤器(bloom filter)就是专门来解决这种问题的,它起到去重的同时,在空间上还能节省90%以上,只是存在一定的误判概率。

认识布隆过滤器

布隆过滤器是一种类似set的数据结构,只是不太准确,当用bf.exists判断元素是否存在时返回结果存在但真实不一定存在;当返回不存在时肯定是不存在,所以判断去重时有一定的误判概率。
当然,误判只会发生在过滤器没有添加过的元素,对于添加过的元素不会发生误判。
特点:高效地插入和查询,占用空间少,返回的结果是不确定性的。

布隆过滤器原理

每个布隆过滤器对应到redis的数据结构中就是一个大型的位数组和几个不同的无偏hash函数,无偏表示分布均匀。

添加key时,使用多个hash函数对key进行hash运算得到一个整数索引值,对位数组长度进行取模运算得到一个位置,每个hash函数都会得到一个不同的位置,将这几个位置都置1就完成了add操作。

查询同理,只要有一位是0就表示这个key不存在,但如果都是1,则不一定存在对应的key。

空间占用估计

布隆过滤器的空间占用有一个简单的计算公式,但推导比较繁琐。布隆过滤器有两个参数,预计元素数量n,错误率f,公式得到两个输出,位数组长度l(即存储空间大小bit),hash函数的最佳数量k。

k = 0.7*(1/n)
f = 0.6185^(l/n)

1、位数组相对长度越长,错误率越低;
2、位数组相对长度越长,需要的hash函数越多;
3、当一个元素平均需要一个字节(8bit)的指纹空间时(l/n=8),错误率大约为2%。

实际元素超出时,误判率会怎样变化?

f = (1-0.5^t)^k  # t为实际元素与预计元素的倍数
1、当错误率为10%时,倍数比为2时,错误率接近40%;
2、当错误率为1%,倍数比为2时,错误率15%;
3、当错误率为0.1%,倍数为2时,错误率5%

redis实现简单bloom filter

要想使用redis提供的布隆过滤器,必须添加redis 4.0版本以上的插件才行,具体参照网上安装步骤。

布隆过滤器有两个基本指令,bf.add添加元素,bf.exists查询元素是否存在,bf.madd一次添加多个元素,bf.mexists一次查询多个元素。

> bf.add spiderurl
> bf.exists spiderurl
> bf.madd spiderurl
> bf.mexists spiderurl

布隆过滤器在第一次add的时候自动创建基于默认参数的过滤器,redis还提供了自定义参数的布隆过滤器。

在add之前使用bf.reserve指令显式创建,其有3个参数,key,error_rate, initial_size,错误率越低,需要的空间越大,error_rate表示预计错误率,initial_size参数表示预计放入的元素数量,当实际数量超过这个值时,误判率会上升,所以需要提前设置一个较大的数值来避免超出。

默认的error_rate是0.01,initial_size是100。

利用布隆过滤器减少磁盘 io 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求。

总结

以上所述是小编给大家介绍的redis实现布隆过滤器的方法及原理,希望对大家有所帮助