Redis实现布隆过滤器的方法及原理
布隆过滤器(bloom filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
本文将介绍布隆过滤器的原理以及redis如何实现布隆过滤器。
应用场景
1、50亿个电话号码,现有10万个电话号码,如何判断这10万个是否已经存在在50亿个之中?(可能方案:数据库,set, hyperloglog)
2、新闻客户端看新闻时,它会不断推荐新的内容,每次推荐时都要去重,那么如何实现推送去重?
3、爬虫url去重?
4、nosql数据库领域降低数据库的io请求数量?
5、邮箱系统的垃圾邮件过滤?
布隆过滤器(bloom filter)就是专门来解决这种问题的,它起到去重的同时,在空间上还能节省90%以上,只是存在一定的误判概率。
认识布隆过滤器
布隆过滤器是一种类似set的数据结构,只是不太准确,当用bf.exists判断元素是否存在时返回结果存在但真实不一定存在;当返回不存在时肯定是不存在,所以判断去重时有一定的误判概率。
当然,误判只会发生在过滤器没有添加过的元素,对于添加过的元素不会发生误判。
特点:高效地插入和查询,占用空间少,返回的结果是不确定性的。
布隆过滤器原理
每个布隆过滤器对应到redis的数据结构中就是一个大型的位数组和几个不同的无偏hash函数,无偏表示分布均匀。
添加key时,使用多个hash函数对key进行hash运算得到一个整数索引值,对位数组长度进行取模运算得到一个位置,每个hash函数都会得到一个不同的位置,将这几个位置都置1就完成了add操作。
查询同理,只要有一位是0就表示这个key不存在,但如果都是1,则不一定存在对应的key。
空间占用估计
布隆过滤器的空间占用有一个简单的计算公式,但推导比较繁琐。布隆过滤器有两个参数,预计元素数量n,错误率f,公式得到两个输出,位数组长度l(即存储空间大小bit),hash函数的最佳数量k。
k = 0.7*(1/n)
f = 0.6185^(l/n)
1、位数组相对长度越长,错误率越低;
2、位数组相对长度越长,需要的hash函数越多;
3、当一个元素平均需要一个字节(8bit)的指纹空间时(l/n=8),错误率大约为2%。
实际元素超出时,误判率会怎样变化?
f = (1-0.5^t)^k # t为实际元素与预计元素的倍数
1、当错误率为10%时,倍数比为2时,错误率接近40%;
2、当错误率为1%,倍数比为2时,错误率15%;
3、当错误率为0.1%,倍数为2时,错误率5%
redis实现简单bloom filter
要想使用redis提供的布隆过滤器,必须添加redis 4.0版本以上的插件才行,具体参照网上安装步骤。
布隆过滤器有两个基本指令,bf.add添加元素,bf.exists查询元素是否存在,bf.madd一次添加多个元素,bf.mexists一次查询多个元素。
> bf.add spiderurl
> bf.exists spiderurl
> bf.madd spiderurl
> bf.mexists spiderurl
布隆过滤器在第一次add的时候自动创建基于默认参数的过滤器,redis还提供了自定义参数的布隆过滤器。
在add之前使用bf.reserve指令显式创建,其有3个参数,key,error_rate, initial_size,错误率越低,需要的空间越大,error_rate表示预计错误率,initial_size参数表示预计放入的元素数量,当实际数量超过这个值时,误判率会上升,所以需要提前设置一个较大的数值来避免超出。
默认的error_rate是0.01,initial_size是100。
利用布隆过滤器减少磁盘 io 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求。
总结
以上所述是小编给大家介绍的redis实现布隆过滤器的方法及原理,希望对大家有所帮助