欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

[LTR] RankLib.jar 包介绍

程序员文章站 2022-06-17 19:38:11
一、介绍 RankLib.jar 是一个学习排名(Learning to rank)算法的库,目前已经实现了如下几种算法: + MART + RankNet + RankBoost + AdaRank + Coordinate Ascent + LambdaMART + ListNet + Rand ......

一、介绍

RankLib.jar 是一个学习排名(Learning to rank)算法的库,目前已经实现了如下几种算法:

  • MART
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

二、

Usage: java -jar RankLib.jar <Params>
Params:
  [+] Training (+ tuning and evaluation)
        # 训练数据
        -train <file>           Training data
        # 指定排名算法
        -ranker <type>          Specify which ranking algorithm to use
                                0: MART (gradient boosted regression tree)
                                1: RankNet
                                2: RankBoost
                                3: AdaRank
                                4: Coordinate Ascent
                                6: LambdaMART
                                7: ListNet
                                8: Random Forests
                                9: Linear regression (L2 regularization)
        # 特征描述文件,列出要学习的特征,每行一个特征,默认使用所有特征
        [ -feature <file> ]     Feature description file: list features to be considered by the learner, each on a separate line
                                If not specified, all features will be used.
        # 
        [ -metric2t <metric> ]  Metric to optimize on the training data. Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)
        [ -gmax <label> ]       Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4})
        
        [ -silent ]             Do not print progress messages (which are printed by default)
        # 是否在验证数据集上调整模型
        [ -validate <file> ]    Specify if you want to tune your system on the validation data (default=unspecified)
                                If specified, the final model will be the one that performs best on the validation data
        # 训练-验证数据集的分割比例
        [ -tvs <x \in [0..1]> ] If you don't have separate validation data, use this to set train-validation split to be (x)(1.0-x)
        # 学习模型保存到指定文件
        [ -save <model> ]       Save the model learned (default=not-save)
        # 是否要在数据上测试训练的模型
        [ -test <file> ]        Specify if you want to evaluate the trained model on this data (default=unspecified)
        # 训练-测试数据集的分割比例
        [ -tts <x \in [0..1]> ] Set train-test split to be (x)(1.0-x). -tts will override -tvs
        # 默认与 metric2t 一致
        [ -metric2T <metric> ]  Metric to evaluate on the test data (default to the same as specified for -metric2t)
        # 归一化特征向量,方法包括求和归一化,均值/标准差归一化,最大值/最小值归一化
        [ -norm <method>]       Normalize all feature vectors (default=no-normalization). Method can be:
                                sum: normalize each feature by the sum of all its values
                                zscore: normalize each feature by its mean/standard deviation
                                linear: normalize each feature by its min/max values
        # 在训练数据集上执行交叉验证
        [ -kcv <k> ]            Specify if you want to perform k-fold cross validation using the specified training data (default=NoCV)
                                -tvs can be used to further reserve a portion of the training data in each fold for validation
        # 交叉验证训练库模型的目录
        [ -kcvmd <dir> ]        Directory for models trained via cross-validation (default=not-save)
        
        [ -kcvmn <model> ]      Name for model learned in each fold. It will be prefix-ed with the fold-number (default=empty)

    [-] RankNet-specific parameters # 特定参数
        # 训练迭代次数
        [ -epoch <T> ]          The number of epochs to train (default=100)
        # 隐含层个数
        [ -layer <layer> ]      The number of hidden layers (default=1)
        # 每层隐含节点个数
        [ -node <node> ]        The number of hidden nodes per layer (default=10)
        # 学习率
        [ -lr <rate> ]          Learning rate (default=0.00005)

    [-] RankBoost-specific parameters # 特定参数
        # 训练迭代次数
        [ -round <T> ]          The number of rounds to train (default=300)
        # 搜索的阈值候选个数
        [ -tc <k> ]             Number of threshold candidates to search. -1 to use all feature values (default=10)

    [-] AdaRank-specific parameters # 特定参数
        # 训练迭代次数
        [ -round <T> ]          The number of rounds to train (default=500)
        # 
        [ -noeq ]               Train without enqueuing too-strong features (default=unspecified)
        # 连续两轮学习之间的误差
        [ -tolerance <t> ]      Tolerance between two consecutive rounds of learning (default=0.002)
        # 一个特征可以被连续选择而不改变性能的最大次数
        [ -max <times> ]        The maximum number of times can a feature be consecutively selected without changing performance (default=5)

    [-] Coordinate Ascent-specific parameters # 特定参数
        [ -r <k> ]              The number of random restarts (default=5)
        [ -i <iteration> ]      The number of iterations to search in each dimension (default=25)
        [ -tolerance <t> ]      Performance tolerance between two solutions (default=0.001)
        [ -reg <slack> ]        Regularization parameter (default=no-regularization)

    [-] {MART, LambdaMART}-specific parameters # 特定参数
        # 树的个数
        [ -tree <t> ]           Number of trees (default=1000)
        # 一个叶子的样本个数
        [ -leaf <l> ]           Number of leaves for each tree (default=10)
        # 学习率
        [ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
        # 树分割时的候选特征个数
        [ -tc <k> ]             Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
        # 一个叶子最少的样本个数
        [ -mls <n> ]            Min leaf support -- minimum #samples each leaf has to contain (default=1)
        [ -estop <e> ]          Stop early when no improvement is observed on validaton data in e consecutive rounds (default=100)

    [-] ListNet-specific parameters
        [ -epoch <T> ]          The number of epochs to train (default=1500)
        [ -lr <rate> ]          Learning rate (default=0.00001)

    [-] Random Forests-specific parameters # 随机森林特定参数
        [ -bag <r> ]            Number of bags (default=300)
        # 子集采样率
        [ -srate <r> ]          Sub-sampling rate (default=1.0)
        # 特征采样率
        [ -frate <r> ]          Feature sampling rate (default=0.3)
        [ -rtype <type> ]       Ranker to bag (default=0, i.e. MART)
        # 树个数
        [ -tree <t> ]           Number of trees in each bag (default=1)
        # 每棵树的叶节点个数
        [ -leaf <l> ]           Number of leaves for each tree (default=100)
        # 学习率
        [ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
        # 树分割时使用的候选特征阈值个数
        [ -tc <k> ]             Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
        [ -mls <n> ]            Min leaf support -- minimum #samples each leaf has to contain (default=1)

    [-] Linear Regression-specific parameters
        [ -L2 <reg> ]           L2 regularization parameter (default=1.0E-10)

  [+] Testing previously saved models # 测试已保存的模型
        # 加载模型
        -load <model>           The model to load
                                Multiple -load can be used to specify models from multiple folds (in increasing order),
                                  in which case the test/rank data will be partitioned accordingly.
        # 测试数据
        -test <file>            Test data to evaluate the model(s) (specify either this or -rank but not both)
        # 对指定文件中的样本排序,与 -test 不能同时使用
        -rank <file>            Rank the samples in the specified file (specify either this or -test but not both)
        [ -metric2T <metric> ]  Metric to evaluate on the test data (default=ERR@10)
        [ -gmax <label> ]       Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4})
        [ -score <file>]        Store ranker's score for each object being ranked (has to be used with -rank)
        # 打印单个排名列表上的性能(必须与 -test 一起使用)
        [ -idv <file> ]         Save model performance (in test metric) on individual ranked lists (has to be used with -test)
        # 特征归一化
        [ -norm ]               Normalize feature vectors (similar to -norm for training/tuning)

1. -train <file>

指定训练数据的文件,训练数据格式:

label    qid:$id    $featureid:$featurevalue    $featureid:$featurevalue ... # description

每行代表一个样本,相同查询请求的样本的 qid 相同,label 表示该样本和该查询请求的相关程度,description 描述信息,不参与训练计算。

2、-ranker <type>

指定排名算法

  • MART(Multiple Additive Regression Tree)多重增量回归树
  • GBDT(Gradient Boosting Decision Tree)梯度渐进决策树
  • GBRT(Gradient Boosting Regression Tree)梯度渐进回归树
  • TreeNet 决策树网络
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

3、-feature <file>

指定样本的特征定义文件,格式如下:

feature1
feature2
...
# featureK(该特征不参与分析)

4、-metric2t <metric>

指定信息检索中的评价指标,包括:
MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k

5、Example

java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -test MQ2008/Fold1/test.txt -validate MQ2008/Fold1/vali.txt -ranker 6 -metric2t NDCG@10 -metric2T ERR@10 -save mymodel.txt

命令解释 >>>
训练数据:MQ2008/Fold1/train.txt
测试数据:MQ2008/Fold1/test.txt
验证数据:MQ2008/Fold1/vali.txt
排名算法:6,LambdaMART
评估指标:NDCG,取排名前 10 个数据进行计算
测试数据评估指标:ERR,取排名前 10 个数据进行计算
保存模型:mymodel.txt

  • 参数 -validate 是可选的,但可以更好的模型结果,对于 RankNet/MART/LambdaMART 非常重要。
  • -metric2t 仅应用于 list-wise 算法(AdaRank、Coordinate Ascent 和 LambdaMART);point-wise 和 Pair-wise 算法(MART、RankNet、RankBoost)是使用自己内部的 RMSE/pair-wise loss 作为评价指标。ListNet 虽然是 list-wise 算法,但是也不用 metric2t 指定评价指标。

6、k-fold cross validation

  • 顺序分区
java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -ranker 4 -kcv 5 -kcvmd models/ -kcvmn ca -metric2t NDCG@10 -metric2T ERR@10

按顺序将训练数据拆分5等份,第 i 份数据作为第 i 折叠的测试数据,第 i 折叠的训练数据则是由其他折叠的数据组成。

  • 随机分区
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt -output mydata/ -shuffle

将训练数据 train.txt 重新洗牌存储在 mydata/ 目录下 train.txt.shuffled

  • 获取每个折叠中的数据
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt.shuffled -output mydata/ -k 5

7、评估已训练的模型

java -jar bin/RankLib.jar -load mymodel.txt -test MQ2008/Fold1/test.txt -metric2T ERR@10

8、模型对比

java -jar bin/RankLib.jar -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/baseline.ndcg.txt
java -jar bin/RankLib.jar -load ca.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/ca.ndcg.txt
java -jar bin/RankLib.jar -load lm.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/lm.ndcg.txt

输出文件中包含了每条查询的 NDCG@10 指标值,以及所有查询的综合指标,例如:

NDCG@10   170   0.0
NDCG@10   176   0.6722390270733757
NDCG@10   177   0.4772656487866462
NDCG@10   178   0.539003131276382
NDCG@10   185   0.6131471927654585
NDCG@10   189   1.0
NDCG@10   191   0.6309297535714574
NDCG@10   192   1.0
NDCG@10   194   0.2532778777010656
NDCG@10   197   1.0
NDCG@10   200   0.6131471927654585
NDCG@10   204   0.4772656487866462
NDCG@10   207   0.0
NDCG@10   209   0.123151194370365
NDCG@10   221   0.39038004999210174
NDCG@10   all   0.5193204478059303

然后再进行对比:

java -cp RankLib.jar ciir.umass.edu.eval.Analyzer -all output/ -base baseline.ndcg.txt > analysis.txt

对比结果 analysis.txt 如下:

Overall comparison
  ------------------------------------------------------------------------
  System  Performance     Improvement     Win     Loss    p-value
  baseline_ndcg.txt [baseline]    0.093
  LM_ndcg.txt     0.2863  +0.1933 (+207.8%)       9       1       0.03
  CA_ndcg.txt     0.5193  +0.4263 (+458.26%)      12      0       0.0

  Detailed break down
  ------------------------------------------------------------------------
             [ < -100%)  [-100%,-75%)  [-75%,-50%)  [-50%,-25%)  [-25%,0%)  (0%,+25%]  (+25%,+50%]  (+50%,+75%]  (+75%,+100%]  ( > +100%]
  LM_ndcg.txt    0        0           1            0            0         4            2            2            1            0
  CA_ndcg.txt    0             0            0            0            0        1            6            2            3            0

9、利用训练模型重排名

java -jar RankLib.jar -load mymodel.txt -rank myResultLists.txt -score myScoreFile.txt

myScoreFile.txt 文件中只是增加了一列,表示重新计算的排名评分,需要自己另外根据该评分排序获取新的排名顺序。

1   0   -7.528650760650635
1   1   2.9022061824798584
1   2   -0.700125515460968
1   3   2.376657485961914
1   4   -0.29666265845298767
1   5   -2.038628101348877
1   6   -5.267711162567139
1   7   -2.022146463394165
1   8   0.6741248369216919
...

参考