欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

简析Spark Streaming/Flink的Kafka动态感知

程序员文章站 2022-06-17 11:55:34
...

点击上方蓝色字体,选择“设为星标”

回复”资源“获取更多惊喜

简析Spark Streaming/Flink的Kafka动态感知

简析Spark Streaming/Flink的Kafka动态感知

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

简析Spark Streaming/Flink的Kafka动态感知

简析Spark Streaming/Flink的Kafka动态感知

暴走大数据

点击右侧关注,暴走大数据!

简析Spark Streaming/Flink的Kafka动态感知

前言

Kafka是我们日常的流处理任务中最为常用的数据源之一。随着数据类型和数据量的增大,难免要增加新的Kafka topic,或者为已有的topic增加更多partition。那么,Kafka后面作为消费者的实时处理引擎是如何感知到topic和partition变化的呢?本文以Spark Streaming和Flink为例来简单探究一下。

Spark Streaming的场合

简析Spark Streaming/Flink的Kafka动态感知

根据官方文档(如上图),spark-streaming-kafka-0-10才支持Kafka的动态感知(即Dynamic Topic Subscription),翻翻源码,来到o.a.s.streaming.kafka010.DirectKafkaInputDStream类,每个微批次都会调用的compute()方法的第一行。

val untilOffsets = clamp(latestOffsets())

顾名思义,clamp()方法用来限制数据的流量,这里不提。而latestOffsets()方法返回各个partition当前最近的offset值,其具体实现如下(包含它调用的paranoidPoll()方法)。

/**
 * Returns the latest (highest) available offsets, taking new partitions into account.
 */
protected def latestOffsets(): Map[TopicPartition, Long] = {
  val c = consumer
  paranoidPoll(c)
  val parts = c.assignment().asScala
  // make sure new partitions are reflected in currentOffsets
  val newPartitions = parts.diff(currentOffsets.keySet)
  // Check if there's any partition been revoked because of consumer rebalance.
  val revokedPartitions = currentOffsets.keySet.diff(parts)
  if (revokedPartitions.nonEmpty) {
    throw new IllegalStateException(s"Previously tracked partitions " +
      s"${revokedPartitions.mkString("[", ",", "]")} been revoked by Kafka because of consumer " +
      s"rebalance. This is mostly due to another stream with same group id joined, " +
      s"please check if there're different streaming application misconfigure to use same " +
      s"group id. Fundamentally different stream should use different group id")
  }
  // position for new partitions determined by auto.offset.reset if no commit
  currentOffsets = currentOffsets ++ newPartitions.map(tp => tp -> c.position(tp)).toMap
  // find latest available offsets
  c.seekToEnd(currentOffsets.keySet.asJava)
  parts.map(tp => tp -> c.position(tp)).toMap
}

/**
 * The concern here is that poll might consume messages despite being paused,
 * which would throw off consumer position.  Fix position if this happens.
 */
private def paranoidPoll(c: Consumer[K, V]): Unit = {
  // don't actually want to consume any messages, so pause all partitions
  c.pause(c.assignment())
  val msgs = c.poll(0)
  if (!msgs.isEmpty) {
    // position should be minimum offset per topicpartition
    msgs.asScala.foldLeft(Map[TopicPartition, Long]()) { (acc, m) =>
      val tp = new TopicPartition(m.topic, m.partition)
      val off = acc.get(tp).map(o => Math.min(o, m.offset)).getOrElse(m.offset)
      acc + (tp -> off)
    }.foreach { case (tp, off) =>
        logInfo(s"poll(0) returned messages, seeking $tp to $off to compensate")
        c.seek(tp, off)
    }
  }
}

可见,在每次compute()方法执行时,都会通过paranoidPoll()方法来seek到每个TopicPartition对应的offset位置,并且通过latestOffsets()方法找出那些新加入的partition,并维护它们的offset,实现了动态感知。

由上也可以看出,Spark Streaming无法处理Kafka Consumer的Rebalance,所以一定要为不同的Streaming App设置不同的group.id。

Flink的场合

简析Spark Streaming/Flink的Kafka动态感知

根据官方文档(如上图),Flink是支持Topic/Partition Discovery的,但是默认并未开启,需要手动配置flink.partition-discovery.interval-millis参数,即动态感知新topic/partition的间隔,单位毫秒。

Flink Kafka Source的基类时o.a.f.streaming.connectors.kafka.FlinkKafkaConsumerBase抽象类,在其run()方法中,会先创建获取数据的KafkaFetcher,再判断是否启用了动态感知。

this.kafkaFetcher = createFetcher(
        sourceContext,
        subscribedPartitionsToStartOffsets,
        watermarkStrategy,
        (StreamingRuntimeContext) getRuntimeContext(),
        offsetCommitMode,
        getRuntimeContext().getMetricGroup().addGroup(KAFKA_CONSUMER_METRICS_GROUP),
        useMetrics);

if (!running) {
    return;
}

// depending on whether we were restored with the current state version (1.3),
// remaining logic branches off into 2 paths:
//  1) New state - partition discovery loop executed as separate thread, with this
//                 thread running the main fetcher loop
//  2) Old state - partition discovery is disabled and only the main fetcher loop is executed
if (discoveryIntervalMillis == PARTITION_DISCOVERY_DISABLED) {
    kafkaFetcher.runFetchLoop();
} else {
    runWithPartitionDiscovery();
}

如果启用了,最终会调用createAndStartDiscoveryLoop()方法,启动一个单独的线程,负责以discoveryIntervalMillis为周期发现新的topic/partition,并传递给KafkaFetcher。

private void createAndStartDiscoveryLoop(AtomicReference<Exception> discoveryLoopErrorRef) {
    discoveryLoopThread = new Thread(() -> {
        try {
            // --------------------- partition discovery loop ---------------------
            // throughout the loop, we always eagerly check if we are still running before
            // performing the next operation, so that we can escape the loop as soon as possible
            while (running) {
                if (LOG.isDebugEnabled()) {
                    LOG.debug("Consumer subtask {} is trying to discover new partitions ...", getRuntimeContext().getIndexOfThisSubtask());
                }
                final List<KafkaTopicPartition> discoveredPartitions;
                try {
                    discoveredPartitions = partitionDiscoverer.discoverPartitions();
                } catch (AbstractPartitionDiscoverer.WakeupException | AbstractPartitionDiscoverer.ClosedException e) {
                    // the partition discoverer may have been closed or woken up before or during the discovery;
                    // this would only happen if the consumer was canceled; simply escape the loop
                    break;
                }
                // no need to add the discovered partitions if we were closed during the meantime
                if (running && !discoveredPartitions.isEmpty()) {
                    kafkaFetcher.addDiscoveredPartitions(discoveredPartitions);
                }
                // do not waste any time sleeping if we're not running anymore
                if (running && discoveryIntervalMillis != 0) {
                    try {
                        Thread.sleep(discoveryIntervalMillis);
                    } catch (InterruptedException iex) {
                        // may be interrupted if the consumer was canceled midway; simply escape the loop
                        break;
                    }
                }
            }
        } catch (Exception e) {
            discoveryLoopErrorRef.set(e);
        } finally {
            // calling cancel will also let the fetcher loop escape
            // (if not running, cancel() was already called)
            if (running) {
                cancel();
            }
        }
    }, "Kafka Partition Discovery for " + getRuntimeContext().getTaskNameWithSubtasks());
    discoveryLoopThread.start();
}

可见,Flink通过名为PartitionDiscoverer的组件来实现动态感知。上面的代码中调用了discoverPartitions()方法,其源码如下。

public List<KafkaTopicPartition> discoverPartitions() throws WakeupException, ClosedException {
    if (!closed && !wakeup) {
        try {
            List<KafkaTopicPartition> newDiscoveredPartitions;
            // (1) get all possible partitions, based on whether we are subscribed to fixed topics or a topic pattern
            if (topicsDescriptor.isFixedTopics()) {
                newDiscoveredPartitions = getAllPartitionsForTopics(topicsDescriptor.getFixedTopics());
            } else {
                List<String> matchedTopics = getAllTopics();
                // retain topics that match the pattern
                Iterator<String> iter = matchedTopics.iterator();
                while (iter.hasNext()) {
                    if (!topicsDescriptor.isMatchingTopic(iter.next())) {
                        iter.remove();
                    }
                }
                if (matchedTopics.size() != 0) {
                    // get partitions only for matched topics
                    newDiscoveredPartitions = getAllPartitionsForTopics(matchedTopics);
                } else {
                    newDiscoveredPartitions = null;
                }
            }
            // (2) eliminate partition that are old partitions or should not be subscribed by this subtask
            if (newDiscoveredPartitions == null || newDiscoveredPartitions.isEmpty()) {
                throw new RuntimeException("Unable to retrieve any partitions with KafkaTopicsDescriptor: " + topicsDescriptor);
            } else {
                Iterator<KafkaTopicPartition> iter = newDiscoveredPartitions.iterator();
                KafkaTopicPartition nextPartition;
                while (iter.hasNext()) {
                    nextPartition = iter.next();
                    if (!setAndCheckDiscoveredPartition(nextPartition)) {
                        iter.remove();
                    }
                }
            }
            return newDiscoveredPartitions;
        } catch (WakeupException e) {
            // the actual topic / partition metadata fetching methods
            // may be woken up midway; reset the wakeup flag and rethrow
            wakeup = false;
            throw e;
        }
    } else if (!closed && wakeup) {
        // may have been woken up before the method call
        wakeup = false;
        throw new WakeupException();
    } else {
        throw new ClosedException();
    }

首先,会根据传入的是单个固定的topic还是由正则表达式指定的多个topics来分别处理,最终都调用getAllPartitionsForTopics()方法来获取这些topic的所有partition(这个方法由抽象类AbstractPartitionDiscoverer的各个子类实现,很简单)。然后会遍历这些partition,并调用setAndCheckDiscoveredPartition()方法来检查之前是否消费过它们,如果是,则移除之,保证方法返回的是新加入的partition。

欢迎点赞+收藏

欢迎转发至朋友圈

简析Spark Streaming/Flink的Kafka动态感知