欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现爬取腾讯招聘网岗位信息

程序员文章站 2022-06-16 21:00:56
目录介绍效果展示实现思路源码展示介绍开发环境windows 10python3.6开发工具pycharm库numpy、matplotlib、time、xlutils.copy、os、xlwt, xlr...

介绍

开发环境

windows 10

python3.6

开发工具

pycharm

numpy、matplotlib、time、xlutils.copy、os、xlwt, xlrd, random

效果展示

代码运行展示

Python实现爬取腾讯招聘网岗位信息

Python实现爬取腾讯招聘网岗位信息

实现思路

1.打开腾讯招聘的网址右击检查进行抓包,进入网址的时候发现有异步渲染,我们要的数据为异步加载

Python实现爬取腾讯招聘网岗位信息

2.构造起始地址:

Python实现爬取腾讯招聘网岗位信息

start_url = ‘https://careers.tencent.com/tencentcareer/api/post/query’

参数在headers的最下面

timestamp: 1625641250509

countryid:

cityid:

bgids:

productid:

categoryid:

parentcategoryid:

attrid:

keyword:

pageindex: 1

pagesize: 10

language: zh-cn

area: cn

3.发送请求,获取响应

self.start_url = 'https://careers.tencent.com/tencentcareer/api/post/query'
 # 构造请求参数
            params = {
                # 捕捉当前时间戳
                'timestamp': str(int(time.time() * 1000)),
                'countryid': '',
                'cityid': '',
                'bgids': '',
                'productid': '',
                'categoryid': '',
                'parentcategoryid': '',
                'attrid': '',
                'keyword': '',
                'pageindex': str(self.start_page),
                'pagesize': '10',
                'language': 'zh-cn',
                'area': 'cn'
            }
            headers = {
                'user-agent': random.choice(user_agent_list)
            }
            response = session.get(url=self.start_url, headers=headers, params=params).json()

4.提取数据,获取岗位信息大列表,提取相应的数据

Python实现爬取腾讯招聘网岗位信息

# 获取岗位信息大列表
        json_data = response['data']['posts']
        # 判断结果是否有数据
        if json_data is none:
            # 没有数据,设置循环条件为false
            self.is_running = false
        # 反之,开始提取数据
        else:
            # 循环遍历,取出列表中的每一个岗位字典
            # 通过key取value值的方法进行采集数据
            for data in json_data:
                # 工作地点
                locationname = data['locationname']
                # 往地址大列表中添加数据
                self.addr_list.append(locationname)
                # 工作属性
                categoryname = data['categoryname']
                # 往工作属性大列表中添加数据
                self.category_list.append(categoryname)
                # 岗位名称
                recruitpostname = data['recruitpostname']
                # 岗位职责
                responsibility = data['responsibility']
                # 发布时间
                lastupdatetime = data['lastupdatetime']
                # 岗位地址
                posturl = data['posturl']

5.数据生成折线图、饼图、散点图、柱状图

# 第一张图:根据岗位地址和岗位属性二者数量生成折线图
        # 146,147两行代码解决图中中文显示问题
plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        # 由于二者数据数量不统一,在此进行切片操作
        x_axis_data = [i for i in addr_dict.values()][:5]
        y_axis_data = [i for i in cate_dict.values()][:5]
        # print(x_axis_data, y_axis_data)
        # plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
        plt.plot(y_axis_data, x_axis_data, 'ro-', color='#4169e1', alpha=0.8, linewidth=1, label='数量') 
        # 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
        plt.legend(loc="upper right")
        plt.xlabel('地点数量')
        plt.ylabel('工作属性数量')
        plt.savefig('根据岗位地址和岗位属性二者数量生成折线图.png')
        plt.show()

Python实现爬取腾讯招聘网岗位信息

# 第二张图:根据岗位地址数量生成饼图
        """工作地址饼图"""
        addr_dict_key = [k for k in addr_dict.keys()]
        addr_dict_value = [v for v in addr_dict.values()]
        plt.rcparams['font.sans-serif'] = ['microsoft yahei']
        plt.rcparams['axes.unicode_minus'] = false
        plt.pie(addr_dict_value, labels=addr_dict_key, autopct='%1.1f%%')
        plt.title(f'岗位地址和岗位属性百分比分布')
        plt.savefig(f'岗位地址和岗位属性百分比分布-饼图')
        plt.show()

Python实现爬取腾讯招聘网岗位信息

# 第三张图:根据岗位地址和岗位属性二者数量生成散点图
        # 这两行代码解决 plt 中文显示的问题
        plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        # 输入岗位地址和岗位属性数据
        production = [i for i in data.keys()]
        tem = [i for i in data.values()]
        colors = np.random.rand(len(tem))  # 颜色数组
        plt.scatter(tem, production, s=200, c=colors)  # 画散点图,大小为 200
        plt.xlabel('数量')  # 横坐标轴标题
        plt.ylabel('名称')  # 纵坐标轴标题
        plt.savefig(f'岗位地址和岗位属性散点图')
        plt.show()

Python实现爬取腾讯招聘网岗位信息

# 第四张图:根据岗位地址和岗位属性二者数量生成柱状图
        import matplotlib;matplotlib.use('tkagg')
        plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        zhfont1 = matplotlib.font_manager.fontproperties(fname='c:\windows\fonts\simsun.ttc')
        name_list = [name for name in data.keys()]
        num_list = [value for value in data.values()]
        width = 0.5  # 柱子的宽度
        index = np.arange(len(name_list))
        plt.bar(index, num_list, width, color='steelblue', tick_label=name_list, label='岗位数量')
        plt.legend(['分解能耗', '真实能耗'], prop=zhfont1, labelspacing=1)
        for a, b in zip(index, num_list):  # 柱子上的数字显示
            plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=7)
        plt.xticks(rotation=270)
        plt.title('岗位数量和岗位属性数量柱状图')
        plt.ylabel('次')
        plt.legend()
        plt.savefig(f'岗位数量和岗位属性数量柱状图-柱状图', bbox_inches='tight')
        plt.show()

Python实现爬取腾讯招聘网岗位信息

源码展示

"""ua大列表"""
user_agent_list = [
                  'mozilla/5.0 (windows nt 6.2; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/60.0.3112.90 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_13_4) applewebkit/537.36 (khtml, like gecko) chrome/69.0.3451.0 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10.9; rv:57.0) gecko/20100101 firefox/57.0',
                  'mozilla/5.0 (windows nt 5.1) applewebkit/537.36 (khtml, like gecko) chrome/28.0.1500.71 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_12_3) applewebkit/537.36 (khtml, like gecko) chrome/58.0.2999.0 safari/537.36',
                  'mozilla/5.0 (windows nt 6.3; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/53.0.2785.70 safari/537.36',
                  'mozilla/5.0 (macintosh; u; intel mac os x 10.4; en-us; rv:1.9.2.2) gecko/20100316 firefox/3.6.2',
                  'mozilla/5.0 (windows nt 5.1) applewebkit/537.36 (khtml, like gecko) chrome/44.0.2403.155 safari/537.36 opr/31.0.1889.174',
                  'mozilla/4.0 (compatible; msie 8.0; windows nt 6.1; trident/4.0; slcc2; .net clr 2.0.50727; .net clr 3.5.30729; .net clr 3.0.30729; .net clr 1.1.4322; ms-rtc lm 8; infopath.2; tablet pc 2.0)',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_3) applewebkit/537.36 (khtml, like gecko) chrome/75.0.3770.100 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_12_6) applewebkit/537.36 (khtml, like gecko) chrome/68.0.3440.106 safari/537.36 opr/55.0.2994.61',
                  'mozilla/5.0 (windows nt 6.1; wow64) applewebkit/535.1 (khtml, like gecko) chrome/14.0.814.0 safari/535.1',
                  'mozilla/5.0 (macintosh; u; ppc mac os x; ja-jp) applewebkit/418.9.1 (khtml, like gecko) safari/419.3',
                  'mozilla/5.0 (macintosh; intel mac os x 10_10_5) applewebkit/537.36 (khtml, like gecko) chrome/43.0.2357.134 safari/537.36',
                  'mozilla/5.0 (compatible; msie 10.0; windows nt 6.1; trident/6.0; touch; masmjs)',
                  'mozilla/5.0 (x11; linux i686) applewebkit/535.21 (khtml, like gecko) chrome/19.0.1041.0 safari/535.21',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_3) applewebkit/537.36 (khtml, like gecko) chrome/69.0.3497.100 safari/537.36',
                  'mozilla/5.0 (windows nt 6.2; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/60.0.3112.90 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_13_4) applewebkit/537.36 (khtml, like gecko) chrome/69.0.3451.0 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10.9; rv:57.0) gecko/20100101 firefox/57.0',
                  'mozilla/5.0 (windows nt 5.1) applewebkit/537.36 (khtml, like gecko) chrome/28.0.1500.71 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_12_3) applewebkit/537.36 (khtml, like gecko) chrome/58.0.2999.0 safari/537.36',
                  'mozilla/5.0 (windows nt 6.3; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/53.0.2785.70 safari/537.36',
                  'mozilla/5.0 (macintosh; u; intel mac os x 10.4; en-us; rv:1.9.2.2) gecko/20100316 firefox/3.6.2',
                  'mozilla/5.0 (windows nt 5.1) applewebkit/537.36 (khtml, like gecko) chrome/44.0.2403.155 safari/537.36 opr/31.0.1889.174',
                  'mozilla/4.0 (compatible; msie 8.0; windows nt 6.1; trident/4.0; slcc2; .net clr 2.0.50727; .net clr 3.5.30729; .net clr 3.0.30729; .net clr 1.1.4322; ms-rtc lm 8; infopath.2; tablet pc 2.0)',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_3) applewebkit/537.36 (khtml, like gecko) chrome/75.0.3770.100 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_12_6) applewebkit/537.36 (khtml, like gecko) chrome/68.0.3440.106 safari/537.36 opr/55.0.2994.61',
                  'mozilla/5.0 (windows nt 6.1; wow64) applewebkit/535.1 (khtml, like gecko) chrome/14.0.814.0 safari/535.1',
                  'mozilla/5.0 (macintosh; u; ppc mac os x; ja-jp) applewebkit/418.9.1 (khtml, like gecko) safari/419.3',
                  'mozilla/5.0 (macintosh; intel mac os x 10_10_5) applewebkit/537.36 (khtml, like gecko) chrome/43.0.2357.134 safari/537.36',
                  'mozilla/5.0 (compatible; msie 10.0; windows nt 6.1; trident/6.0; touch; masmjs)',
                  'mozilla/5.0 (x11; linux i686) applewebkit/535.21 (khtml, like gecko) chrome/19.0.1041.0 safari/535.21',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_3) applewebkit/537.36 (khtml, like gecko) chrome/69.0.3497.100 safari/537.36',
                  'mozilla/5.0 (windows nt 6.1; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/83.0.4093.3 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_14_5) applewebkit/537.36 (khtml, like gecko; compatible; swurl) chrome/77.0.3865.120 safari/537.36',
                  'mozilla/5.0 (windows nt 10.0; wow64) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.88 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_14_5) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.88 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_14_6) applewebkit/537.36 (khtml, like gecko) chrome/74.0.3729.131 safari/537.36',
                  'mozilla/5.0 (windows nt 10.0; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/83.0.4086.0 safari/537.36',
                  'mozilla/5.0 (windows nt 6.1; wow64; rv:75.0) gecko/20100101 firefox/75.0',
                  'mozilla/5.0 (windows nt 6.1; wow64) applewebkit/537.36 (khtml, like gecko) coc_coc_browser/91.0.146 chrome/85.0.4183.146 safari/537.36',
                  'mozilla/5.0 (windows; u; windows nt 5.2; en-us) applewebkit/537.36 (khtml, like gecko) safari/537.36 vivobrowser/8.4.72.0 chrome/62.0.3202.84',
                  'mozilla/5.0 (windows nt 6.3; wow64) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.101 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_7) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.88 safari/537.36 edg/87.0.664.60',
                  'mozilla/5.0 (macintosh; intel mac os x 10.16; rv:83.0) gecko/20100101 firefox/83.0',
                  'mozilla/5.0 (x11; cros x86_64 13505.63.0) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.88 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10.9; rv:68.0) gecko/20100101 firefox/68.0',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_7) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.101 safari/537.36',
                  'mozilla/5.0 (macintosh; intel mac os x 10_15_1) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.88 safari/537.36',
                  'mozilla/5.0 (windows nt 10.0; wow64) applewebkit/537.36 (khtml, like gecko) chrome/86.0.4240.198 safari/537.36 opr/72.0.3815.400',
                  'mozilla/5.0 (x11; linux x86_64) applewebkit/537.36 (khtml, like gecko) chrome/87.0.4280.101 safari/537.36',
                  ]
from requests_html import htmlsession
import os, xlwt, xlrd, random
from xlutils.copy import copy
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.font_manager import fontproperties  # 字体库
import time
session = htmlsession()


class txspider(object):

    def __init__(self):
        # 起始的请求地址
        self.start_url = 'https://careers.tencent.com/tencentcareer/api/post/query'
        # 起始的翻页页码
        self.start_page = 1
        # 翻页条件
        self.is_running = true
        # 准备工作地点大列表
        self.addr_list = []
        # 准备岗位种类大列表
        self.category_list = []

    def parse_start_url(self):
        """
        解析起始的url地址
        :return:
        """
        # 条件循环模拟翻页
        while self.is_running:
            # 构造请求参数
            params = {
                # 捕捉当前时间戳
                'timestamp': str(int(time.time() * 1000)),
                'countryid': '',
                'cityid': '',
                'bgids': '',
                'productid': '',
                'categoryid': '',
                'parentcategoryid': '',
                'attrid': '',
                'keyword': '',
                'pageindex': str(self.start_page),
                'pagesize': '10',
                'language': 'zh-cn',
                'area': 'cn'
            }
            headers = {
                'user-agent': random.choice(user_agent_list)
            }
            response = session.get(url=self.start_url, headers=headers, params=params).json()
            """调用解析响应方法"""
            self.parse_response_json(response)
            """翻页递增"""
            self.start_page += 1
            """翻页终止条件"""
            if self.start_page == 20:
                self.is_running = false
        """翻页完成,开始生成分析图"""
        self.crate_img_four_func()

    def crate_img_four_func(self):
        """
        生成四张图方法
        :return:
        """
        # 统计数量
        data = {}            # 大字典
        addr_dict = {}       # 工作地址字典
        cate_dict = {}       # 工作属性字典
        for k_addr, v_cate in zip(self.addr_list, self.category_list):
            if k_addr in data:
                # 大字典统计工作地址数据
                data[k_addr] = data[k_addr] + 1
                # 地址字典统计数据
                addr_dict[k_addr] = addr_dict[k_addr] + 1
            else:
                data[k_addr] = 1
                addr_dict[k_addr] = 1
            if v_cate in data:
                # 大字典统计工作属性数据
                data[v_cate] = data[v_cate] + 1
                # 工作属性字典统计数据
                cate_dict[v_cate] = data[v_cate] + 1
            else:
                data[v_cate] = 1
                cate_dict[v_cate] = 1
        # 第一张图:根据岗位地址和岗位属性二者数量生成折线图
        # 146,147两行代码解决图中中文显示问题
        plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        # 由于二者数据数量不统一,在此进行切片操作
        x_axis_data = [i for i in addr_dict.values()][:5]
        y_axis_data = [i for i in cate_dict.values()][:5]
        # print(x_axis_data, y_axis_data)
        # plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
        plt.plot(y_axis_data, x_axis_data, 'ro-', color='#4169e1', alpha=0.8, linewidth=1, label='数量')

        # 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
        plt.legend(loc="upper right")
        plt.xlabel('地点数量')
        plt.ylabel('工作属性数量')
        plt.savefig('根据岗位地址和岗位属性二者数量生成折线图.png')
        plt.show()
        # 第二张图:根据岗位地址数量生成饼图
        """工作地址饼图"""
        addr_dict_key = [k for k in addr_dict.keys()]
        addr_dict_value = [v for v in addr_dict.values()]
        plt.rcparams['font.sans-serif'] = ['microsoft yahei']
        plt.rcparams['axes.unicode_minus'] = false
        plt.pie(addr_dict_value, labels=addr_dict_key, autopct='%1.1f%%')
        plt.title(f'岗位地址和岗位属性百分比分布')
        plt.savefig(f'岗位地址和岗位属性百分比分布-饼图')
        plt.show()
        # 第三张图:根据岗位地址和岗位属性二者数量生成散点图
        # 这两行代码解决 plt 中文显示的问题
        plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        # 输入岗位地址和岗位属性数据
        production = [i for i in data.keys()]
        tem = [i for i in data.values()]
        colors = np.random.rand(len(tem))  # 颜色数组
        plt.scatter(tem, production, s=200, c=colors)  # 画散点图,大小为 200
        plt.xlabel('数量')  # 横坐标轴标题
        plt.ylabel('名称')  # 纵坐标轴标题
        plt.savefig(f'岗位地址和岗位属性散点图')
        plt.show()
        # 第四张图:根据岗位地址和岗位属性二者数量生成柱状图
        import matplotlib;matplotlib.use('tkagg')
        plt.rcparams['font.sans-serif'] = ['simhei']
        plt.rcparams['axes.unicode_minus'] = false
        zhfont1 = matplotlib.font_manager.fontproperties(fname='c:\windows\fonts\simsun.ttc')
        name_list = [name for name in data.keys()]
        num_list = [value for value in data.values()]
        width = 0.5  # 柱子的宽度
        index = np.arange(len(name_list))
        plt.bar(index, num_list, width, color='steelblue', tick_label=name_list, label='岗位数量')
        plt.legend(['分解能耗', '真实能耗'], prop=zhfont1, labelspacing=1)
        for a, b in zip(index, num_list):  # 柱子上的数字显示
            plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=7)
        plt.xticks(rotation=270)
        plt.title('岗位数量和岗位属性数量柱状图')
        plt.ylabel('次')
        plt.legend()
        plt.savefig(f'岗位数量和岗位属性数量柱状图-柱状图', bbox_inches='tight')
        plt.show()

    def parse_response_json(self, response):
        """
        解析响应
        :param response:
        :return:
        """
        # 获取岗位信息大列表
        json_data = response['data']['posts']
        # 判断结果是否有数据
        if json_data is none:
            # 没有数据,设置循环条件为false
            self.is_running = false
        # 反之,开始提取数据
        else:
            # 循环遍历,取出列表中的每一个岗位字典
            # 通过key取value值的方法进行采集数据
            for data in json_data:
                # 工作地点
                locationname = data['locationname']
                # 往地址大列表中添加数据
                self.addr_list.append(locationname)
                # 工作属性
                categoryname = data['categoryname']
                # 往工作属性大列表中添加数据
                self.category_list.append(categoryname)
                # 岗位名称
                recruitpostname = data['recruitpostname']
                # 岗位职责
                responsibility = data['responsibility']
                # 发布时间
                lastupdatetime = data['lastupdatetime']
                # 岗位地址
                posturl = data['posturl']
                # 构造保存excel所需要的格式字典
                data_dict = {
                    # 该字典的key值与创建工作簿的sheet表的名称所关联
                    '岗位详情': [recruitpostname, locationname, categoryname, responsibility, lastupdatetime, posturl]
                }
                """调用保存excel表格方法,数据字典作为参数"""
                self.save_excel(data_dict)
                # 提示输出
                print(f"第{self.start_page}页--岗位{recruitpostname}----采集完成----logging!!!")

    def save_excel(self, data_dict):
        """
        保存excel
        :param data_dict: 数据字典
        :return:
        """
        # 判断保存到当我文件目录的路径是否存在
        os_path_1 = os.getcwd() + '/数据/'
        if not os.path.exists(os_path_1):
            # 不存在,即创建这个目录,即创建”数据“这个文件夹
            os.mkdir(os_path_1)
        # 判断将数据保存到表格的这个表格是否存在,不存在,创建表格,写入表头
        os_path = os_path_1 + '腾讯招聘数据.xls'
        if not os.path.exists(os_path):
            # 创建新的workbook(其实就是创建新的excel)
            workbook = xlwt.workbook(encoding='utf-8')
            # 创建新的sheet表
            worksheet1 = workbook.add_sheet("岗位详情", cell_overwrite_ok=true)
            excel_data_1 = ('岗位名称', '工作地点', '工作属性', '岗位职责', '发布时间', '岗位地址')
            for i in range(0, len(excel_data_1)):
                worksheet1.col(i).width = 2560 * 3
                #               行,列,  内容,            样式
                worksheet1.write(0, i, excel_data_1[i])
            workbook.save(os_path)
        # 判断工作表是否存在
        # 存在,开始往表格中添加数据(写入数据)
        if os.path.exists(os_path):
            # 打开工作薄
            workbook = xlrd.open_workbook(os_path)
            # 获取工作薄中所有表的个数
            sheets = workbook.sheet_names()
            for i in range(len(sheets)):
                for name in data_dict.keys():
                    worksheet = workbook.sheet_by_name(sheets[i])
                    # 获取工作薄中所有表中的表名与数据名对比
                    if worksheet.name == name:
                        # 获取表中已存在的行数
                        rows_old = worksheet.nrows
                        # 将xlrd对象拷贝转化为xlwt对象
                        new_workbook = copy(workbook)
                        # 获取转化后的工作薄中的第i张表
                        new_worksheet = new_workbook.get_sheet(i)
                        for num in range(0, len(data_dict[name])):
                            new_worksheet.write(rows_old, num, data_dict[name][num])
                        new_workbook.save(os_path)

    def run(self):
        """
        启动运行
        :return:
        """
        self.parse_start_url()


if __name__ == '__main__':
    # 创建该类的对象
    t = txspider()
    # 通过实例方法,进行调用
    t.run()

以上就是python实现爬取腾讯招聘网岗位信息的详细内容,更多关于python爬取招聘网岗位信息的资料请关注其它相关文章!