1、前言
一直在从事linux下后台开发,经常与core文件打交道。还记得刚开始从事linux下开发时,程序突然崩溃了,也没有任何日志。我不知所措,同事叫我看看core,我却问什么是core,怎么看。同事鄙视的眼神,我依然在目。后来学会了从core文件中分析原因,通过gdb看出程序挂再哪里,分析前后的变量,找出问题的原因。当时就觉得很神奇,core文件是怎么产生的呢?难道系统会自动产生,可是我在自己的linux系统上面写个非法程序测试,并没有产生core问题?这又是怎么回事呢?今天在ngnix的源码时候,发现可以在程序中设置core dump,又是怎么回事呢?在公司发现生成的core文件都带有进程名称、进程ID、和时间,这又是怎么做到的呢?今天带着这些疑问来说说core文件是如何生成,如何配置。
2、基本概念
当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中,这种行为就叫做Core Dump(中文有的翻译成“核心转储”)。我们可以认为 core dump 是“内存快照”,但实际上,除了内存信息之外,还有些关键的程序运行状态也会同时 dump 下来,例如寄存器信息(包括程序指针、栈指针等)、内存管理信息、其他处理器和操作系统状态和信息。core dump 对于编程人员诊断和调试程序是非常有帮助的,因为对于有些程序错误是很难重现的,例如指针异常,而 core dump 文件可以再现程序出错时的情景。
3、开启core dump
可以使用命令ulimit开启,也可以在程序中通过setrlimit系统调用开启。
程序中开启core dump,通过如下API可以查看和设置RLIMIT_CORE
#include <sys/resource.h> int getrlimit(int resource, struct rlimit *rlim); int setrlimit(int resource, const struct rlimit *rlim);
参考程序如下所示:
#include <unistd.h> #include <sys/time.h> #include <sys/resource.h> #include <stdio.h> #define CORE_SIZE 1024 * 1024 * 500 int main() { struct rlimit rlmt; if (getrlimit(RLIMIT_CORE, &rlmt) == -1) { return -1; } printf("Before set rlimit CORE dump current is:%d, max is:%d\n", (int)rlmt.rlim_cur, (int)rlmt.rlim_max); rlmt.rlim_cur = (rlim_t)CORE_SIZE; rlmt.rlim_max = (rlim_t)CORE_SIZE; if (setrlimit(RLIMIT_CORE, &rlmt) == -1) { return -1; } if (getrlimit(RLIMIT_CORE, &rlmt) == -1) { return -1; } printf("After set rlimit CORE dump current is:%d, max is:%d\n", (int)rlmt.rlim_cur, (int)rlmt.rlim_max); /*测试非法内存,产生core文件*/ int *ptr = NULL; *ptr = 10; return 0; }
执行./main, 生成的core文件如下所示
GDB调试core文件,查看程序挂在位置。当core dump 之后,使用命令 gdb program core
来查看 core 文件,其中 program 为可执行程序名,core 为生成的 core 文件名。
4、参考资料
http://www.cnblogs.com/hazir/p/linxu_core_dump.html
http://www.cnblogs.com/niocai/archive/2012/04/01/2428128.html
http://baidutech.blog.51cto.com/4114344/904419/
Linux下coredump
1.coredump简单介绍
程序崩溃时保存的程序运行时的保存的内存信息的coredump文件,可以通过sysctl或者/proc中来设置core文件的文件名以及生成的路径等。一般的coredump文件为ELF格式,coredmp包含了程序运行时的内存,寄存器状态,堆栈指针,内存管理信息等。许多程序和操作系统出错时会自动生成一个core文件。coredump可以用在很多场合,使用Linux系统在跑一些压力测试或者系统负载一大的话,系统就hang住了或者干脆system panic。这时唯一能帮助你分析和解决问题的就是coredump了。通常进程或者内核收到
2.core文件相关命令
ulimit命令改变shell的资源限制,显示shell的资源限制,coredump项值为coredump文件大小单位blocks(4kbytes),程序崩溃时的行为不可按平常时的行为来估计,比如缓冲区溢出等错误可能导致堆栈被破坏,因此经常会出现某个变量的值被修改成乱七八糟的,然后程序用这个大小去申请内存就可能导致程序比平常时多占用很多内存。因此无论程序正常运行时占用的内存多么少,要保证生成Core文件还是将大小限制设为unlimited为好一般使用ulimit -c unlimited不限制coredump文件大小,生成文件太小gdb时候会报错
ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 129159
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 129159
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
实际程序中可以通过cat /proc/pid/limits查看进程的资源限制,Max core file size中soft limit为coredump文件支持最大值,0则表示不会生成coredump文件,这里以pid=1为例子
#cat /proc/1/limits
Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8388608 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes 129159 129159 processes
Max open files 1024 4096 files
Max locked memory 65536 65536 bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 129159 129159 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 0 0
Max realtime priority 0 0
Max realtime timeout unlimited unlimited us
若程序调用了seteuid()/setegid()/setsid()改变了进程的有效用户或组,则在默认情况下系统不会为这些进程生成coredump。很多服务程序都会调用seteuid()或者daemon( )。为了能够让这些进程生成core dump,需要进程中使用函数getrlimit,setrlimit来改变大小,linux系统下man setrlimit查看函数具体说明RLIMIT_CORE指定修改参数为coredump,其他参数具体含义man命令进行查阅函数使用之后进行说明。
如果开启之后还可以设置coredump文件的格式化名字以及生成的路径,/proc/sys/kernel/core_uses_pid支持文件名中带有pid, /proc/sys/kernel/core_pattern可以设置格式化的core文件保存位置或文件名,例如如下示例说明echo "/corefile/core-%e-%p-%t" > core_pattern将会控制所产生的core文件会存放到/corefile目录下,产生的文件名为core-命令名-pid-时间戳
参数列表:
%p - insert pid into filename 添加pid
%u - insert current uid into filename 添加当前uid
%g - insert current gid into filename 添加当前gid
%s - insert signal that caused the coredump into the filename 添加导致产生core的信号
%t - insert UNIX time that the coredump occurred into filename 添加core文件生成时的unix时间
%h - insert hostname where the coredump happened into filename 添加主机名
%e - insert coredumping executable name into filename 添加命令名
Coredump函数在kernel/fs/exec.c中函数为do_coredump( ),如果coredump生成失败可以在do_coredump函数中增加打印,do_coredump的源代码如下所示。
void do_coredump(long signr, int exit_code, struct pt_regs *regs)
{
struct core_state core_state;
char corename[CORENAME_MAX_SIZE + 1];
struct mm_struct *mm = current->mm;
struct linux_binfmt * binfmt;
const struct cred *old_cred;
struct cred *cred;
int retval = 0;
int flag = 0;
int ispipe;
static atomic_t core_dump_count = ATOMIC_INIT(0);
struct coredump_params cprm = {
.signr = signr,
.regs = regs,
.limit = rlimit(RLIMIT_CORE),
/*
* We must use the same mm->flags while dumping core to avoid
* inconsistency of bit flags, since this flag is not protected
* by any locks.
*/
.mm_flags = mm->flags,
};
audit_core_dumps(signr);
binfmt = mm->binfmt;
//binfmt->core_dump根据内核宏初始化赋值core_dump函数,未开宏时为NULL
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!__get_dumpable(cprm.mm_flags))
goto fail;
cred = prepare_creds();
if (!cred)
goto fail;
/*
* We cannot trust fsuid as being the "true" uid of the
* process nor do we know its entire history. We only know it
* was tainted so we dump it as root in mode 2.
*/
if (__get_dumpable(cprm.mm_flags) == 2) {
/* Setuid core dump mode */
flag = O_EXCL; /* Stop rewrite attacks */
cred->fsuid = 0; /* Dump root private */
}
retval = coredump_wait(exit_code, &core_state);
if (retval < 0)
goto fail_creds;
old_cred = override_creds(cred);
/*
* Clear any false indication of pending signals that might
* be seen by the filesystem code called to write the core file.
*/
clear_thread_flag(TIF_SIGPENDING);
//根据/proc/sys/kernel/core_pattern中值定义core文件名
ispipe = format_corename(corename, signr);
if (ispipe) {
int dump_count;
char **helper_argv;
if (cprm.limit == 1) {
/*
* Normally core limits are irrelevant to pipes, since
* we're not writing to the file system, but we use
* cprm.limit of 1 here as a speacial value. Any
* non-1 limit gets set to RLIM_INFINITY below, but
* a limit of 0 skips the dump. This is a consistent
* way to catch recursive crashes. We can still crash
* if the core_pattern binary sets RLIM_CORE = !1
* but it runs as root, and can do lots of stupid things
* Note that we use task_tgid_vnr here to grab the pid
* of the process group leader. That way we get the
* right pid if a thread in a multi-threaded
* core_pattern process dies.
*/
printk(KERN_WARNING
"Process %d(%s) has RLIMIT_CORE set to 1\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
cprm.limit = RLIM_INFINITY;
dump_count = atomic_inc_return(&core_dump_count);
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_dropcount;
}
helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
if (!helper_argv) {
printk(KERN_WARNING "%s failed to allocate memory\n",
__func__);
goto fail_dropcount;
}
retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
NULL, UMH_WAIT_EXEC, umh_pipe_setup,
NULL, &cprm);
argv_free(helper_argv);
if (retval) {
printk(KERN_INFO "Core dump to %s pipe failed\n",
corename);
goto close_fail;
}
} else {
struct inode *inode;
//根据进程的soft limit大小,soft limit大于coredump初始设置最小值=PAGE_SZIE
if (cprm.limit < binfmt->min_coredump)
goto fail_unlock;
cprm.file = filp_open(corename,
O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
0600);
if (IS_ERR(cprm.file))
goto fail_unlock;
inode = cprm.file->f_path.dentry->d_inode;
if (inode->i_nlink > 1)
goto close_fail;
if (d_unhashed(cprm.file->f_path.dentry))
goto close_fail;
/*
* AK: actually i see no reason to not allow this for named
* pipes etc, but keep the previous behaviour for now.
*/
if (!S_ISREG(inode->i_mode))
goto close_fail;
/*
* Dont allow local users get cute and trick others to coredump
* into their pre-created files.
*/
if (inode->i_uid != current_fsuid())
goto close_fail;
if (!cprm.file->f_op || !cprm.file->f_op->write)
goto close_fail;
if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
goto close_fail;
}
//执行core_dump函数输出寄存器等信息到core文件中
retval = binfmt->core_dump(&cprm);
if (retval)
current->signal->group_exit_code |= 0x80;
if (ispipe && core_pipe_limit)
wait_for_dump_helpers(cprm.file);
close_fail:
if (cprm.file)
filp_close(cprm.file, NULL);
fail_dropcount:
if (ispipe)
atomic_dec(&core_dump_count);
fail_unlock:
coredump_finish(mm);
revert_creds(old_cred);
fail_creds:
put_cred(cred);
fail:
return;
}
-
开启内核宏支持coredump函数(对应的进程重新编译并编译中-g要加上才能正常显示gdb信息)
-
命令设置coredump文件大小,ulimit -c unlimited表示coredump没有限制或者ulimit -c 1024支持文件大小1024k,如果进程脱离终端利用getrlimit,setrlimit如下所示
struct rlimit rlp; getrlimit(RLIMIT_CORE, &rlp); rlp.rlim_cur = 4 * 1024 * 1024; setrlimit(RLIMIT_CORE, &rlp);
设置文件生成路径以及文件名。可以/proc/sys/kernel/core_pattern和/proc/sys/kernel/core_uses_pid来设置或者sysctl -w kernel.core_uses_pid =0 sysctl -w kernel.core_pattern = /var/core.%e.%p设置
3. 调试
如上述步骤成功则会生成对应的core文件,如果是大型服务器中core文件可以直接gdb进行调试,这里只说明在嵌入式中如何利用gdb达到调试的目的。对应目录生成的core文件从系统中拷贝出来类似tftp命令 ftp或者利用u盘拷贝。嵌入式中不能拷贝出来coredump文件那之前设置都是白费的。
成功获取core文件,并将拷贝的core文件放入对应的process的程序工程目录下同一目录下且工程目录有process生成bin文件,cd到process的目录
XXX-XXX-XX-gdb bin core
进入gdb模式,调试中可能有一些库要用到,所以还要设置gdb中调用库的库文件的绝对路径,一般linux嵌入式一般是生成的文件系统作为调用路径
initially, you will see a lot of error messages. They can be ignored. Now on the gdb prompt, type:
(gdb) set solib-absolute-prefix SRCPATH/targets/PROFILE/fs.install
(gdb) bt
bt之后可以看见打印的堆栈信息。
造成程序coredump的原因很多,这里根据以往的经验总结一下:
1 内存访问越界
- 由于使用错误的下标,导致数组访问越界
- 搜索字符串时,依靠字符串结束符来判断字符串是否结束,但是字符串没有正常的使用结束符
- 使用strcpy, strcat, sprintf, strcmp, strcasecmp等字符串操作函数,将目标字符串读/写爆。应该使用strncpy, strlcpy, strncat, strlcat, snprintf, strncmp, strncasecmp等函数防止读写越界。
2.多线程程序使用了线程不安全的函数。
3.多线程读写的数据未加锁保护。对于会被多个线程同时访问的全局数据,应该注意加锁保护,否则很容易造成core dump
4.非法指针
- 使用空指针
- 随意使用指针转换。一个指向一段内存的指针,除非确定这段内存原先就分配为某种结构或类型,或者这种结构或类型的数组,否则不要将它转换为这种结构或类型的指针,而应该将这段内存拷贝到一个这种结构或类型中,再访问这个结构或类型。这是因为如果这段内存的开始地址不是按照这种结构或类型对齐的,那么访问它时就很容易因为bus error而core dump.
5.堆栈溢出
不要使用大的局部变量(因为局部变量都分配在栈上),这样容易造成堆栈溢出,破坏系统的栈和堆结构,导致出现莫名其妙的错误。