欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

mysql对存储分布式文件系统的存储需求总结

程序员文章站 2022-06-16 13:22:58
1. 引言云原生数据库跟分布式mpp数据库是有差异的,虽然两者都是计算与存储分离,但是在资源的占用上有所不同。云原生数据库是shard everything架构,其依赖的存储资源、内存资源、事务资源在云中都是共享、弹性伸缩的。由分布式文件系统提供按需分配、租户隔离的块存储,由分布式内存池提供buffer pool占用的大块内存。分布式mpp数据库则是shard nothing架构,其依赖的存储资源、内存资源、事务资源是单个物理节点上的资源,在SQL计算层进行了分布式计算逻辑的分发。本文重点介绍共享存储,...

1. 引言

云原生数据库跟分布式mpp数据库是有差异的,虽然两者都是计算与存储分离,但是在资源的占用上有所不同。云原生数据库是shard everything架构,其依赖的存储资源、内存资源、事务资源在云中都是共享、弹性伸缩的。由分布式文件系统提供按需分配、租户隔离的块存储,由分布式内存池提供buffer pool占用的大块内存。分布式mpp数据库则是shard nothing架构,其依赖的存储资源、内存资源、事务资源是单个物理节点上的资源,在SQL计算层进行了分布式计算逻辑的分发。

本文重点介绍共享存储,如果分布式文件系统的iops、每秒刷盘数能够比单个物理节点上的性能线性提升,那么云原生数据库mysql的tps也会随之提升,而且mysql的原生SQL语法都是支持的,包括嵌套子查询、存储过程、函数等。分布式mpp在SQL计算层做分布式计算逻辑的分发,这些可能会被裁减掉。

单机mysql的事务型存储引擎innodb的表空间数据存储依赖于单个linux节点的VFS提供的posix标准的文件操作接口。VFS作为各个具体文件系统(ext4、xfs、ext3等)的抽象层,屏蔽了各个具体文件系统的实现差异,对应用层提供了统一、标准的posix文件操作接口。类似于阿里云的polardb对polarfs的依赖,其实polardb就是mysql的内核源码的二次开发而成的。本文重点罗列云原生数据库mysql在各个场景下对posix文件操作接口需求。

分布式弹性文件系统要具体地实现这些接口,各个接口的语义要完全符合posix标准。并提供mount挂载的功能,将其实现的具体接口注册到VFS内部,mysql将表空间放置到挂载了分布式弹性文件系统的路径下,innodb内部对表空间文件操作时候,实际上就调用了分布式文件系统提供的文件操作的api。

innodb的表空间有用户表空间、系统表空间、Redo日志、Undo表空间。本文重点分析用户表空间对文件操作接口的需求,应该也涵盖了其余的表空间对文件操作接口的需求。

用户对用户表空间的操作主要有两类,一类是表空间数据的读写,另一类是表空间DDL操作,对应到posix标准的文件操作接口,一类是文件数据读写IO,另一类是文件的元数据操作。

2. 表空间数据的读写操作

2.1 同步IO

同步IO会阻塞调用线程,直到IO完成,调用线程才返回,pwrite/pread函数是线程安全的同步IO,lseek+read/write函数非线程安全,需要加互斥锁,并发量大的时候,对性能有一定的影响。以下几种场景下,会使用同步IO。

场景一. linux不支持native aio, Page cleaner线程刷脏,同步写

从buffer pool中刷脏页时候,如果不支持native aio,则通过simulated aio模拟异步写进行dirty page的写入表空间操作,本质上是同步写

调用栈:

1 buf_flush_page_cleaner_worker → pc_flush_slot → buf_flush_do_batch →  buf_do_flush_list_batch → buf_flush_page_and_try_neighbors → buf_flush_try_neighbors → buf_flush_page  → buf_flush_write_block_low → fil_io(sync=false) → os_aio → os_aio_func →AIO::wake_simulated_handler_thread 

场景二. 刷脏时,如果double write buffer写满,将double write buffer中数据写入系统表空间ibdata文件,同步写

调用栈:

buf_flush_page → buf_dblwr_flush_buffered_writes → fil_io(sync=true) 

场景三. 事务buffer中数据写入Redo log file,同步写

调用栈:

1 innobase_commit_low → trx_commit_for_mysql → trx_commit → trx_commit_in_memory → trx_flush_log_if_needed_low → log_write_up_to → log_group_write_buf → log_group_write_buf → fil_io(sync=true) 

场景四,用户线程触发的数据块请求读写,同步读写

调用栈:

1 ha_innobase::index_read → row_search_mvcc →  row_sel_get_clust_rec_for_mysql→  buf_page_get_gen → buf_read_page → buf_read_page_low → fil_io(sync=true) 

2.2异步IO

异步IO不会阻塞调用线程,提交IO请求后,调用线程就返回,可以做其余的操作,后台线程会轮询IO的完成情况,如果执行完成可以调用相关的回调函数。

在支持native aio的情况下,innodb的后台 Page cleaner线程刷脏,预读走的就是异步IO流程,主要以下两个场景。

场景一. linux支持native aio ,Page cleaner线程刷脏,异步写

从buffer pool中刷脏页时候,如果支持native aio,则通过 io_submit异步io接口进行dirty page的表空间写入操作。

 1 buf_flush_page_cleaner_worker → pc_flush_slot →
              buf_flush_do_batch →  buf_do_flush_list_batch →
              buf_flush_page_and_try_neighbors → buf_flush_try_neighbors
              →buf_flush_page  → buf_flush_write_block_low →
              fil_io(sync=false)→ os_aio → os_aio_func → AIO::linux_dispatch  →
              io_submit 

场景二. 线性或者逻辑预读,异步读

逻辑预读调用栈:

1 ha_innobase::index_read → row_search_mvcc → row_sel_get_clust_rec_for_mysql → buf_page_get_gen → buf_read_ahead_random → fil_io(sync=false) 

线性预读调用栈:

1 ha_innobase::index_read → row_search_mvcc → row_sel_get_clust_rec_for_mysql → buf_page_get_gen → buf_read_ahead_linear→ fil_io(sync=false) 

2.3 刷盘

如果innodb_flush_method设置了O_DSYNC,日志文件(ib_logfileXXX)使用O_SYNC打开,因此写完数据不需要调用函数fsync刷盘,数据文件(ibd)使用default模式打开,因此写完数据需要调用fsync刷盘。

如果innodb_flush_method设置了fsync或者不设置,数据文件和日志文件都使用default模式打开,写完数据都需要使用fsync来刷盘。

如果innodb_flush_method设置了O_DIRECT,日志文件(ib_logfileXXX)使用default模式打开,写完数据需要调用fsync函数刷盘,数据文件(ibd)使用O_DIRECT模式打开,写完数据需要调用fsync刷盘。

如果innodb_flush_method设置为O_DIRECT_NO_FSYNC,文件打开方式与O_DIRECT模式类似,区别是,数据文件写完后,不调用fsync来刷盘,主要针对O_DIRECT能保证文件的元数据也落盘的FS

如果使用linux native aio,innodb_flush_method一定要配置成O_DIRECT,否则会退化成同步IO。

3. 表空间DDL操作

3.1 create table

创建表时候调用,调用流程如下:

1 ha_innobase::create → dict_build_tablespace_for_table → fil_idb_create 

依次依赖于 os_file_create 、os_file_flush、os_file_set_size、os_file_close、os_file_delete, 这些函数依次依赖于open\ fsync\lseek\close\unlink posix文件标准接口。

3.2 drop table

删除表的时候调用,调用栈如下。

1 ha_innobase::delete_table → row_drop_table_for_mysql → row_drop_single_table_tablespace → fil_delete_tablespace → unlink
3.3 rename table 

重命名表的时候调用,调用栈如下。

1 ha_innobase::rename_table → row_rename_table_for_mysql → row_rename_table_for_mysql → dict_table_rename_in_cache→ fil_rename_tablespace → rename
3.4 truncate table 

截断表时候调用,默认表空间截留4个page的大小。调用栈如下。

1 ha_innobase::truncate → row_truncate_table_for_mysql → row_truncate_complete → truncate_t::truncate → os_file_truncate_posix → ftruncate
3.5 extend  tablespace 

innodb表空间文件大小是动态扩展的,如果表空间中的数据页不够,则需要对表空间文件进行预扩展,比如往聚集索引中大量插入数据的时候。调用栈如下

1 row_ins_clust_index_entry_low → btr_cur_pessimistic_insert → fsp_try_extend_data_file → fsp_try_extend_data_file → fil_space_extend → posix_fallocate 

posix标准的文件操作接口列表

4.1 文件元数据操作

1 open(const char *__file, int __oflag, …)
2 close (int __fd);
3 rename (const char *__old, const char *__new)
4 fcntl(int __fd, int __cmd, ...)
5 unlink(const char *__name)
6 mkdir(const char *__path)
7 rmdir(const char *__path)
8 ftruncate(int __fd, __off64_t __length)
9 posix_fallocate(int __fd, __off64_t __offset,__off64_t __len) 

4.2 同步IO接口

1 lseek(int __fd, __off64_t __offset, int __whence)
2 read(int __fd, void *__buf, size_t __nbytes)
3 write(int __fd, const void *__buf, size_t __n)
4 pread(int __fd, void *__buf, size_t __nbytes, __off64_t __offset)
5 pwrite(int __fd, const void *__buf, size_t __nbytes, __off64_t __offset)
6 fsync(int __fd) 

4.3 异步IO接口

1 io_setup(int maxevents, io_context_t *ctxp);
2 io_destroy(io_context_t ctx);
3 io_submit(io_context_t ctx, long nr, struct iocb *ios[]);
4 io_cancel(io_context_t ctx, struct iocb *iocb, struct io_event *evt);
5 io_getevents(io_context_t ctx, long min_nr, long nr, struct io_event *events, struct timespec *timeout); 

4.4 挂载

mount
umount 

本文地址:https://blog.csdn.net/pythongogoing/article/details/107912230