flink Datastreamkaifa之自定义Source(Custom-source)
程序员文章站
2022-06-16 12:05:11
...
进入官网我们可以看到很多内置的source/sink,这能覆盖大多数的应用场景,
嗯,大多数…
产品:
我:
产品:“我想直接读取mysql的数据…”
我:
那就自定义一个吧,首先学习一下如何自定义Datasource,显然官方预见到了这个场景,给我们提供了三个接口:
- SourceFunction:非并行数据源
- ParallelSourceFunction:并行数据源
- RichParallelSourceFunction:(Rich??,这个我懂,丰富的意思,英语四级300多分不是白考的)丰富的并行数据源
下面一个一个举栗子:
SourceFunction:并行数据源
- 定义MyNoParallelSourceScala 类
package hctang.tech.streaming.custormSource
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
/**
* 自定义并行度为一的source
* 实现从一开始产生递增
*/
class MyNoParallelSourceScala extends SourceFunction[Long]{
/* override def run(ctx:SourceContext[Long])={
}*/
var count=1L
var isRunning=true
override def run(sourceContext: SourceContext[Long]): Unit = {
while(isRunning){
sourceContext.collect(count)
count+=1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning=false
}
}
调用
package hctang.tech.streaming.custormSource
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
object StreamingDemoWithNoParallelSourceScala {
def main(args: Array[String]): Unit = {
implicit val typeInfo = TypeInformation.of(classOf[(String)])
//获取执行环境
val env=StreamExecutionEnvironment.getExecutionEnvironment
//隐式转换
import org.apache.flink.api.scala._
val text=env.addSource(new MyNoParallelSourceScala)
val mapData = text.map(line=>{
println("接收到的数据:"+line)
line
})
val sum =mapData.timeWindowAll(Time.seconds(5)).sum(0)//窗口,五秒一次
sum.print().setParallelism(1)
env.execute("StreamingFromCollectionScala")
}
}
执行结果如图:
定义并行数据源
- 定义MyParallelSourceScala
package hctang.tech.streaming.custormSource
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
/**
* 自定义并行度为一的source
* 实现从一开始产生递增
*/
class MyParallelSourceScala extends ParallelSourceFunction[Long]{
/* override def run(ctx:SourceContext[Long])={
}*/
var count=1L
var isRunning=true
override def run(sourceContext: SourceContext[Long]): Unit = {
while(isRunning){
sourceContext.collect(count)
count+=1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning=false
}
}
- 定义StreamingDemoWithParallelSourceScala调用MyParallelSourceScala
package hctang.tech.streaming.custormSource
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
object StreamingDemoWithParallelSourceScala {
def main(args: Array[String]): Unit = {
implicit val typeInfo = TypeInformation.of(classOf[(String)])
//获取执行环境
val env=StreamExecutionEnvironment.getExecutionEnvironment
//隐式转换
import org.apache.flink.api.scala._
val text=env.addSource(new MyParallelSourceScala).setParallelism(2)
val mapData = text.map(line=>{
println("接收到的数据:"+line)
line
})
val sum =mapData.timeWindowAll(Time.seconds(5)).sum(0)
sum.print().setParallelism(1)
env.execute("StreamingFromCollectionScala")
}
}
- 运行结果
定义丰富的并行数据源…
- 定义MyRichParallelSourceScala
package hctang.tech.streaming.custormSource
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, RichParallelSourceFunction}
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
/**
* 自定义并行度为一的source
* 实现从一开始产生递增
*/
class MyRichParallelSourceScala extends RichParallelSourceFunction[Long]{
/* override def run(ctx:SourceContext[Long])={
}*/
var count=1L
var isRunning=true
override def run(sourceContext: SourceContext[Long]): Unit = {
while(isRunning){
sourceContext.collect(count)
count+=1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning=false
}
//Rich
override def open(parameters: Configuration): Unit = super.open(parameters)
override def close(): Unit = super.close()
}
说明: 看上面代码,是不是多了open和close方法,没错,Rich!!
- 调用
package hctang.tech.streaming.custormSource
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
object StreamingDemoWithRichParallelSourceScala {
def main(args: Array[String]): Unit = {
implicit val typeInfo = TypeInformation.of(classOf[(String)])
//获取执行环境
val env=StreamExecutionEnvironment.getExecutionEnvironment
//隐式转换
import org.apache.flink.api.scala._
val text=env.addSource(new MyRichParallelSourceScala).setParallelism(100)
val mapData = text.map(line=>{
println("接收到的数据:"+line)
line
})
val sum =mapData.timeWindowAll(Time.seconds(10)).sum(0)
sum.print().setParallelism(1)
env.execute("StreamingFromCollectionScala")
}
}
- 运行结果
恩…错了,重来,刚并行度设置成了100
并行度改为2
热身结束,回到最开始的场景,读取mysql中的数据,mysql有url,需要打开,不用了需要关闭,显然我们需要用RichSourceFunction(里边有close和open方法),
- class类SQL_source
package hctang.tech.streaming.custormSource
import java.sql.{Connection, DriverManager, PreparedStatement}
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.source.RichSourceFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
class SQL_source extends RichSourceFunction[Student]{
private var connection: Connection = null
private var ps: PreparedStatement = null
override def open(parameters: Configuration): Unit = {
val driver = "com.mysql.jdbc.Driver"
val url = "jdbc:mysql://local:3306/test"
val username = "root"
val password = "root"
Class.forName(driver)
connection = DriverManager.getConnection(url, username, password)
val sql = "select id , name , addr , sex from student"
ps = connection.prepareStatement(sql)
}
override def close(): Unit = {
if (connection != null) {
connection.close()
}
if (ps != null) {
ps.close()
}
}
override def run(sourceContext: SourceContext[Student]): Unit = {
val queryRequest = ps.executeQuery()
while (queryRequest.next()) {
val stuid = queryRequest.getInt("id")
val stuname = queryRequest.getString("name")
val stuaddr = queryRequest.getString("addr")
val stusex = queryRequest.getString("sex")
val stu = new Student(stuid, stuname, stuaddr, stusex)
sourceContext.collect(stu)
}
}
override def cancel(): Unit = {}
}
case class Student(stuid: Int, stuname: String, stuaddr: String, stusex: String) {
override def toString: String = {
"stuid:" + stuid + " stuname:" + stuname + " stuaddr:" + stuaddr + " stusex:" + stusex
}
}
- Object:MysqlSourceScala
package hctang.tech.streaming.custormSource
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
object MysqlSoureScala {
def main(args:Array[String]):Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val source: DataStream[Student] = env.addSource(new SQL_source)
source.print()
env.execute()
}
}
注意,不要忘记添加依赖(根据自己环境修改)
- pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.hctang.flink</groupId>
<artifactId>firstcode</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-scala -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.9.0</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.9.0</version>
<!--<scope>provided</scope>-->
<!--指定包的作用域,集群中运行的话,很多东西并不需要,-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.9.0</version>
</dependency><!--flink kafka connector-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-2 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-shaded-hadoop-2</artifactId>
<version>2.7.5-9.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-fs</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.3</version>
</dependency>
<!--日志-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>runtime</scope>
</dependency>
<!--alibaba fastjson-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.51</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.46</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 编译插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<!-- scala编译插件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.1.6</version>
<configuration>
<scalaCompatVersion>2.11</scalaCompatVersion>
<scalaVersion>2.11.8</scalaVersion>
<encoding>UTF-8</encoding>
</configuration>
<executions>
<execution>
<id>compile-scala</id>
<phase>compile</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>test-compile-scala</id>
<phase>test-compile</phase>
<goals>
<goal>add-source</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- 打jar包插件(会包含所有依赖) -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.6</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<!-- 可以设置jar包的入口类(可选)-->
<mainClass>hctang.tech.bacth.Bacth.BatchWordCount</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
推荐阅读