欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

elastic-job部署及简例

程序员文章站 2022-06-16 11:26:04
...

 

 elastic-job部署以及简单例子:elastic-job是当当开发的基于qutarz以及zookeeper封装的作业调度工具,主要有两个大框架,一个是elastic-job lite另外一个是elastic-job cloud,其中qutarz是一个开源的作业调度工具,zookeeper是分布式调度工具,这两者结合搭建了elastic-job-lite,这是一个无中心节点的调度,而elastic-job-cloud是一个有中心节点的分布式调度开源工具,只需要设置好机器以及分片,就可以自动的调度到对应的机器上运行。


与lite的不同时cloud采用了mesos来进行分布式资源管理,简单的来说两者的不同是:同一个作业在两台机器上跑,lite需要手动在两台机器上跑,但是cloud只需要上传作业包,就可以自动的在两台机器上跑,因为lite不支持作业的调度,为无中心的。

二、环境的搭建

由于elastic-job-cloud的环境暂时未搭建出来,因此在此简单介绍lite的搭建

(1)jdk的安装

jdk需要1.7以上,因为里面有spring相关的代码,具体的安装请自行百度,或参考链接https://blog.csdn.net/molong1208/article/details/50537898

(2)zookeeper的安装

具体的安装过程见链接https://blog.csdn.net/molong1208/article/details/53675063

(3)maven的安装

官网maven要求3.0.4以及以上,具体的安装过程与jdk类似,请自行百度

三、elastic-job-lite的优势及特点

(1)简单的概念及适用场景

1. 分片概念

任务的分布式执行,需要将一个任务拆分为n个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。

例如:有一个遍历数据库某张表的作业,现有2台服务器。为了快速的执行作业,那么每台服务器应执行作业的50%。 为满足此需求,可将作业分成2片,每台服务器执行1片。作业遍历数据的逻辑应为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。 如果分成10片,则作业遍历数据的逻辑应为:每片分到的分片项应为ID%10,而服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9,直接的结果就是服务器A遍历ID以0-4结尾的数据;服务器B遍历ID以5-9结尾的数据。

2. 分片项与业务处理解耦

Elastic-Job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系。

3. 个性化参数的适用场景

个性化参数即shardingItemParameter,可以和分片项匹配对应关系,用于将分片项的数字转换为更加可读的业务代码。

例如:按照地区水平拆分数据库,数据库A是北京的数据;数据库B是上海的数据;数据库C是广州的数据。 如果仅按照分片项配置,开发者需要了解0表示北京;1表示上海;2表示广州。 合理使用个性化参数可以让代码更可读,如果配置为0=北京,1=上海,2=广州,那么代码中直接使用北京,上海,广州的枚举值即可完成分片项和业务逻辑的对应关系。

(2)elastic-job-lite优势及特点

1. 分布式调度

Elastic-Job-Lite并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。

注册中心仅用于作业注册和监控信息存储。而主作业节点仅用于处理分片和清理等功能。

弹性分布式实现

  • 第一台服务器上线触发主服务器选举。主服务器一旦下线,则重新触发选举,选举过程中阻塞,只有主服务器选举完成,才会执行其他任务。

  • 某作业服务器上线时会自动将服务器信息注册到注册中心,下线时会自动更新服务器状态。

  • 主节点选举,服务器上下线,分片总数变更均更新重新分片标记。

  • 定时任务触发时,如需重新分片,则通过主服务器分片,分片过程中阻塞,分片结束后才可执行任务。如分片过程中主服务器下线,则先选举主服务器,再分片。

  • 通过上一项说明可知,为了维持作业运行时的稳定性,运行过程中只会标记分片状态,不会重新分片。分片仅可能发生在下次任务触发前。

  • 每次分片都会按服务器IP排序,保证分片结果不会产生较大波动。

  • 实现失效转移功能,在某台服务器执行完毕后主动抓取未分配的分片,并且在某台服务器下线后主动寻找可用的服务器执行任务。

2. 作业高可用

Elastic-Job-Lite提供最安全的方式执行作业。将分片总数设置为1,并使用多于1台的服务器执行作业,作业将会以1主n从的方式执行。

一旦执行作业的服务器崩溃,等待执行的服务器将会在下次作业启动时替补执行。开启失效转移功能效果更好,可以保证在本次作业执行时崩溃,备机立即启动替补执行。

3. 最大限度利用资源

Elastic-Job-Lite也提供最灵活的方式,最大限度的提高执行作业的吞吐量。将分片项设置为大于服务器的数量,最好是大于服务器倍数的数量,作业将会合理的利用分布式资源,动态的分配分片项。

例如:3台服务器,分成10片,则分片项分配结果为服务器A=0,1,2;服务器B=3,4,5;服务器C=6,7,8,9。 如果服务器C崩溃,则分片项分配结果为服务器A=0,1,2,3,4;服务器B=5,6,7,8,9。在不丢失分片项的情况下,最大限度的利用现有资源提高吞吐量。

三、简单的例子

elastic-job的作业类型分为三种,一种是简单的simple的形式,一种是基于流式数据的处理,一种是基于脚本的调度,因为本人所使用的情况是基于流式的处理,那么就简单搭了一个基于流式的demo,其他类型的类似

流式作业的方式适合于不间断的数据处理的类型,例如需要拉取订单数据,因为订单是连续不间断的,因此需要一直拉取。

按照elastic-job官网上介绍,搭建一个基于dataflow(流式处理)的demo,这个demo的功能就是,从一个数据中心里面取数据,按照数据中心的数据id%分片个数==分片参数进行拉取数据,拉取完成后将对应的数据id置为完成的状态,具体代码如下所示:

(1)入口函数main函数以及作业的配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package ElasticJobExample.ElasticJobExample;
 
import com.dangdang.ddframe.job.config.JobCoreConfiguration;
import com.dangdang.ddframe.job.config.dataflow.DataflowJobConfiguration;
import com.dangdang.ddframe.job.lite.api.JobScheduler;
import com.dangdang.ddframe.job.lite.config.LiteJobConfiguration;
import com.dangdang.ddframe.job.reg.base.CoordinatorRegistryCenter;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperConfiguration;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperRegistryCenter;
 
/**
 * Hello world!
 *
 */
public class App
{
    public static void main(String[] args) {
        new JobScheduler(createRegistryCenter(), createJobConfiguration()).init();
    }
     
    private static CoordinatorRegistryCenter createRegistryCenter() {
        CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(new ZookeeperConfiguration("ip:2181", "elastic-job-demo"));
        regCenter.init();
        return regCenter;
    }
     
    private static LiteJobConfiguration createJobConfiguration() {
        // 创建作业配置
         
        JobCoreConfiguration coreConfig = JobCoreConfiguration.newBuilder("myDataFlowTest", "0/10 * * * * ?", 3).shardingItemParameters("0=0,1=1,2=2").build();
        DataflowJobConfiguration dataflowJobConfig = new DataflowJobConfiguration(coreConfig, JavaDataflowJob.class.getCanonicalName(), true);
        LiteJobConfiguration result = LiteJobConfiguration.newBuilder(dataflowJobConfig).build();
        return result;
    }
}

 

(2)作业的逻辑处理部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package ElasticJobExample.ElasticJobExample;
 
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
 
import com.dangdang.ddframe.job.api.ShardingContext;
import com.dangdang.ddframe.job.api.dataflow.DataflowJob;
 
import dataflowjob.entity.Foo;
import dataflowjob.process.DataProcess;
import dataflowjob.process.DataProcessFactory;
 
public class JavaDataflowJob implements DataflowJob<foo> {
    private DataProcess dataProcess = DataProcessFactory.getDataProcess();
     
    @Override
    public List<foo> fetchData(ShardingContext context) {
        List<foo> result = new ArrayList<foo>();
        result = dataProcess.getData(context.getShardingParameter(), context.getShardingTotalCount());
        System.out.println(String.format("------Thread ID: %s, Date: %s, Sharding Context: %s, Action: %s, Data: %s", Thread.currentThread().getId(), new Date(), context, "fetch data",result));
        return result;
    }
     
    @Override
    public void processData(ShardingContext shardingContext, List<foo> data) {
        System.out.println(String.format("------Thread ID: %s, Date: %s, Sharding Context: %s, Action: %s, Data: %s", Thread.currentThread().getId(), new Date(), shardingContext, "finish data",data));
        for(Foo foo:data){
            dataProcess.setData(foo.getId());
        }
    }
 
}</foo></foo></foo></foo></foo>

 

(3)具体的处理类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package dataflowjob.process;
 
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
 
import dataflowjob.entity.Foo;
 
public class DataProcess {
 
    private Map<integer, foo=""> data = new ConcurrentHashMap<>(30, 1);
    public DataProcess()
    {
        for(int i=0;i<30;i++){
            data.put(i, new Foo(i,Foo.Status.TODO));
        }
    }
    public List<foo> getData(String tailId,int shardNum)
    {
        int intId  = Integer.parseInt(tailId);
        List<foo> result = new ArrayList<foo>();
        for (Map.Entry<integer, foo=""> each : data.entrySet()) {
            Foo foo = each.getValue();
            int key = each.getKey();
            if (key % shardNum == intId && foo.getStatus() == Foo.Status.TODO) {
                result.add(foo);
            }
        }
        return result;
    }
    public void setData(int i){
        data.get(i).setStatus(Foo.Status.DONE);
    }
 
}
</integer,></foo></foo></foo></integer,>

 

(4)entity类Foo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
package dataflowjob.entity;
 
public class Foo {
    private int id;
    private Status status;
    public Foo(final int id,final Status status) {
        this.id = id;
        this.status = status;
    }
    public int getId() {
        return id;
    }
    public void setId(int id) {
        this.id = id;
    }
    public Status getStatus() {
        return status;
    }
    public void setStatus(Status status) {
        this.status = status;
    }
    public enum Status{
        TODO,
        DONE
    }
 
}

 

(5)具体处理工厂类

1
2
3
4
5
6
7
8
9
10
11
package dataflowjob.process;
 
 
public class DataProcessFactory {
      private static DataProcess dataProcess = new DataProcess();
         
        public static DataProcess getDataProcess() {
            return dataProcess;
        }
 
}
相关标签: elasticjob