欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch之扩充tensor的操作

程序员文章站 2022-06-16 09:43:18
我就废话不多说了,大家还是直接看代码吧~b = torch.zeros((3, 2, 6, 6))a = torch.zeros((3, 2, 1, 1))a.expand_as(b).size()o...

我就废话不多说了,大家还是直接看代码吧~

b = torch.zeros((3, 2, 6, 6))
a = torch.zeros((3, 2, 1, 1))
a.expand_as(b).size()
out[32]: torch.size([3, 2, 6, 6])
a = torch.zeros((3, 2, 2, 1))
a.expand_as(b).size()
traceback (most recent call last):
 file "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/ipython/core/interactiveshell.py", line 3267, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 file "<ipython-input-34-972575f79e92>", line 1, in <module>
  a.expand_as(b).size()
runtimeerror: the expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 2. target sizes: [3, 2, 6, 6]. tensor sizes: [3, 2, 2, 1]
a = torch.zeros((3, 2, 1, 2))
a.expand_as(b).size()
traceback (most recent call last):
 file "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/ipython/core/interactiveshell.py", line 3267, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 file "<ipython-input-36-972575f79e92>", line 1, in <module>
  a.expand_as(b).size()
runtimeerror: the expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. target sizes: [3, 2, 6, 6]. tensor sizes: [3, 2, 1, 2]
a = torch.zeros((3, 2, 2, 2))
a.expand_as(b).size()
traceback (most recent call last):
 file "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/ipython/core/interactiveshell.py", line 3267, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 file "<ipython-input-38-972575f79e92>", line 1, in <module>
  a.expand_as(b).size()
runtimeerror: the expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. target sizes: [3, 2, 6, 6]. tensor sizes: [3, 2, 2, 2]
a = torch.zeros((3, 2, 6, 2))
a.expand_as(b).size()
traceback (most recent call last):
 file "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/ipython/core/interactiveshell.py", line 3267, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 file "<ipython-input-40-972575f79e92>", line 1, in <module>
  a.expand_as(b).size()
runtimeerror: the expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. target sizes: [3, 2, 6, 6]. tensor sizes: [3, 2, 6, 2]
a = torch.zeros((3, 2, 6, 1))
a.expand_as(b).size()
out[44]: torch.size([3, 2, 6, 6])
a = torch.zeros((3, 2, 1, 6))
a.expand_as(b).size()
out[46]: torch.size([3, 2, 6, 6])

tensor.expand_as在这里用于扩展tensor到目标形状,常用的多是在h和w方向上的扩展。

假设目标形状为n, c, h, w,则要求tensor.size()=n, c, h, w(这里假设n,c不变):

1、h=w=1

2、h=1, w!=1

3、h!=1, w=1

补充:tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度

在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。

比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。

tf.expand_dims()

tf.squeeze()

tf.expand_dims()

tf.expand_dims(input, axis=none, name=none, dim=none)

在第axis位置增加一个维度.

给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

例子

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

tf.squeeze()

tf.squeeze(input, axis=none, name=none, squeeze_dims=none)

直接上例子

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
 shape(squeeze(t)) ==> [2, 3]
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
 shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

相关标签: Pytorch tensor