基于id3算法根据房价数据进行画图预测python
程序员文章站
2022-06-15 20:26:40
根据已给的波士顿房价数据,对波斯顿房价进行预测。即,实现给出若干条件(如房间数、社区的低收入阶层的比率和镇上学生与教师数量比例的部分数据),要能说出给出的条件是否能够有效进行预测,如可以做有效预测,则给出预测的结果。上面的是数据下面是ID3的算法#coding:utf-8__author__ = 'liukai'from math import logclass DecisonTree: trainData = [] trainLabel = [] feature...
根据已给的波士顿房价数据,对波斯顿房价进行预测。即,实现给出若干条件(如房间数、社区的低收入阶层的比率和镇上学生与教师数量比例的部分数据),要能说出给出的条件是否能够有效进行预测,如可以做有效预测,则给出预测的结果。
上面的是数据
下面是ID3的算法
#coding:utf-8
__author__ = 'liukai'
from math import log
class DecisonTree:
trainData = []
trainLabel = []
featureValus = {} #每个特征所有可能的取值
def __init__(self, trainData, trainLabel, threshold):
self.loadData(trainData, trainLabel)
self.threshold = threshold
self.tree = self.createTree(range(0,len(trainLabel)), range(0,len(trainData[0])))
#加载数据
def loadData(self, trainData, trainLabel):
if len(trainData) != len(trainLabel):
raise ValueError('input error')
self.trainData = trainData
self.trainLabel = trainLabel
#计算 featureValus
for data in trainData:
for index, value in enumerate(data):
if not index in self.featureValus.keys():
self.featureValus[index] = [value]
if not value in self.featureValus[index]:
self.featureValus[index].append(value)
#计算信息熵
def caculateEntropy(self, dataset):
labelCount = self.labelCount(dataset)
size = len(dataset)
result = 0
for i in labelCount.values():
pi = i / float(size)
result -= pi * (log(pi) /log(2))
return result
#计算信息增益
def caculateGain(self, dataset, feature):
values = self.featureValus[feature] #特征feature 所有可能的取值
result = 0
for v in values:
subDataset = self.splitDataset(dataset=dataset, feature=feature, value=v)
result += len(subDataset) / float(len(dataset)) * self.caculateEntropy(subDataset)
return self.caculateEntropy(dataset=dataset) - result
#计算数据集中,每个标签出现的次数
def labelCount(self, dataset):
labelCount = {}
for i in dataset:
if trainLabel[i] in labelCount.keys():
labelCount[trainLabel[i]] += 1
else:
labelCount[trainLabel[i]] = 1
return labelCount
'''
dataset:数据集
features:特征集
'''
def createTree(self, dataset, features):
labelCount = self.labelCount(dataset)
#如果特征集为空,则该树为单节点树
#计算数据集中出现次数最多的标签
if not features:
return max(list(labelCount.items()),key = lambda x:x[1])[0]
#如果数据集中,只包同一种标签,则该树为单节点树
if len(labelCount) == 1:
# return labelCount.keys()[0]
return labelCount.keys()
#计算特征集中每个特征的信息增益
l = map(lambda x : [x, self.caculateGain(dataset=dataset, feature=x)], features)
#选取信息增益最大的特征
feature, gain = max(l, key = lambda x: x[1])
#如果最大信息增益小于阈值,则该树为单节点树
#
if self.threshold > gain:
return max(list(labelCount.items()),key = lambda x:x[1])[0]
tree = {}
#选取特征子集
subFeatures = filter(lambda x : x != feature, features)
tree['feature'] = feature
#构建子树
for value in self.featureValus[feature]:
subDataset = self.splitDataset(dataset=dataset, feature=feature, value=value)
#保证子数据集非空
if not subDataset:
continue
tree[value] = self.createTree(dataset=subDataset, features=subFeatures)
return tree
def splitDataset(self, dataset, feature, value):
reslut = []
for index in dataset:
if self.trainData[index][feature] == value:
reslut.append(index)
return reslut
def classify(self, data):
def f(tree, data):
if type(tree) != dict:
return tree
else:
return f(tree[data[tree['feature']]], data)
return f(self.tree, data)
if __name__ == '__main__':
trainData = [
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 1, 0, 1],
[0, 1, 1, 0],
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 1],
[1, 1, 1, 1],
[1, 0, 1, 2],
[1, 0, 1, 2],
[2, 0, 1, 2],
[2, 0, 1, 1],
[2, 1, 0, 1],
[2, 1, 0, 2],
[2, 0, 0, 0],
]
trainLabel = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0]
tree = DecisonTree(trainData=trainData, trainLabel=trainLabel, threshold=0)
print (tree.tree)
# {'feature': 2,
# 0: {'feature': 1, 0: dict_keys([0]),1: dict_keys([1])},
# 1: dict_keys([1])}
接下来就是画图的实现
#### -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import time
import math
from math import sin
import numpy as np
# plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
# plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# plt.xlabel(“x轴标签”)
# plt.ylabel("y轴标签")
# plt.title("图像标题")
# plt.xlim(0,5) 在画好的图形中选取x范围内的图形片段。
# plt.ylim(0,5) y片段
# plt.plot(x,y,linewidth=4) 设置线的宽度
# plt.plot(x,y,"g字符") g代表绿色 后面的字符表示线的种类。如虚线,点线等
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
#D.柱状图bar
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [2.3, 3.4, 1.2, 6.6, 7.0]
plt.figure()
plt.bar(x, y)
plt.title("bar")
plt.show()
exit()
##饼图###
labels = ['China', 'Swiss', 'USA', 'UK', 'Laos', 'Spain']
X = [222, 42, 455, 664, 454, 334]
fig = plt.figure()
plt.pie(X, labels=labels, autopct='%1.2f%%') # 画饼图(数据,数据对应的标签,百分数保留两位小数点)
plt.title("Pie chart")
plt.show()
plt.savefig("PieChart.jpg")
exit()
x=np.arange(0,2*np.pi,0.01)
y=np.sin(x)
plt.xlabel('角度')
plt.ylabel("SIN")
# plt.ylim(-1,1) #片段选择
plt.plot(x,y)
plt.show()
exit()
x = [1, 2, 3, 4, 5]
y = [2.3, 3.4, 1.2, 6.6, 7.0]
fig = plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.plot(x, y, color='r', linestyle='-')
plt.subplot(122)
plt.title("正弦图片")
plt.plot(x, y, color='r', linestyle='--')
plt.show()
exit()
x = [1, 2, 3, 4, 5]
y = [2.3, 3.4, 1.2, 6.6, 7.0]
plt.scatter(x, y, color='r', marker='+')
plt.show()
exit()
plt.figure(figsize=(6,6))
plt.subplot(231)
plt.subplot(232)
plt.subplot(233)
plt.subplot(234)
plt.subplot(235)
plt.subplot(236)
plt.show()
exit()
x_data = [1, 2, 3, 4, 5]
y_data = [2.3, 3.4, 1.2, 6.6, 7.0]
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
# plt.ion()#本次运行请注释,全局运行不要注释
plt.show()
time.sleep(20)
本文地址:https://blog.csdn.net/RONNIE_Zz/article/details/107664183