欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

使用matlab进行DBscan聚类

程序员文章站 2022-06-15 20:28:04
使用matlab对输入数据进行DBscan聚类。算法的思想来自基于密度方法的聚类clear;close all;clc;k = 3;Eps = 2;%% 生成模拟数据n = 200;a = linspace(0,8*pi,n/2);u = [5*cos(a)+5 10*cos(a)+5]'+1*rand(n,1);v = [5*sin(a)+5 10*sin(a)+5]'+1*rand(n,1);mu1 = [20 20];S1 = [10 0;0 10];data1 = mvn...

使用matlab对输入数据进行DBscan聚类。算法的思想来自基于密度方法的聚类
可直接运行代码以及数据文件可从此下载

使用matlab进行DBscan聚类
使用matlab进行DBscan聚类

clear;
close all;
clc;
k = 3;
Eps = 2;

%% 生成模拟数据
n = 200;
a = linspace(0,8*pi,n/2);
u = [5*cos(a)+5 10*cos(a)+5]'+1*rand(n,1);
v = [5*sin(a)+5 10*sin(a)+5]'+1*rand(n,1);
mu1 = [20 20];
S1 = [10 0;0 10];
data1 = mvnrnd(mu1,S1,100);
data = [u v;data1];

% image = imread('data.png');
% image = image(:,:,1);
% [x,y]=find(image == 0);
% data=[x,y];

%% 准备变量,输出原始结果
[m,n] = size(data);
data=[(1:m)',data];
n = n + 1;
type = zeros(1,m);
cluster_No = 1;
visited = zeros(m,1);
class = zeros(1,m)-2;

figure(2);
plot(data(:,2),data(:,3),'k.');
grid on
daspect([1 1 1]);
xlabel('x');ylabel('y');
title('原始输入点');
hold on;

%% DBscan
Kdtree = KDTreeSearcher(data(:,2:3));

for i = 1:m
    % 抽取一个未访问点
    if visited(i)==0
        % 标为访问
        visited(i) = 1;
        point_now = data(i,:);
        Idx_range = rangesearch(Kdtree, point_now(2:3), Eps);
        index = Idx_range{1};
        if length(index) > k
            class(i) = cluster_No;
            while index
                if visited(index(1)) == 0
                    visited(index(1)) = 1;
                    if class(index(1)) <= 0
                        class(index(1)) = cluster_No;
                    end
                    point_now = data(index(1),:);
                    Idx_range = rangesearch(Kdtree, point_now(2:3), Eps);
                    index_temp = Idx_range{1};
                    index(1) = [];
                    if length(index_temp) > k
                        index = [index, index_temp];
                    end
                else
                    index(1) = [];
                end
            end
            cluster_No = cluster_No + 1;
        end
    end
end

%% DBscan聚类结果
figure;
for i = 1: cluster_No
    color = [rand(),rand(),rand()];
    data_class = data(find(class==i),:);
    plot(data_class(:,2),data_class(:,3),'.','Color',color,'MarkerFaceColor',color);
    hold on
end
data_class = data(find(class<=0),:);
plot(data_class(:,2),data_class(:,3),'k*');
hold on
grid on
daspect([1 1 1]);
xlabel('x');ylabel('y');
title('DBscan聚类结果');

本文地址:https://blog.csdn.net/john_xia/article/details/107662116