欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对Keras中predict()方法和predict_classes()方法的区别说明

程序员文章站 2022-06-15 17:42:10
1 predict()方法当使用predict()方法进行预测时,返回值是数值,表示样本属于每一个类别的概率,我们可以使用numpy.argmax()方法找到样本以最大概率所属的类别作为样本的预测标签...

1 predict()方法

当使用predict()方法进行预测时,返回值是数值,表示样本属于每一个类别的概率,我们可以使用numpy.argmax()方法找到样本以最大概率所属的类别作为样本的预测标签。

对Keras中predict()方法和predict_classes()方法的区别说明

2 predict_classes()方法

当使用predict_classes()方法进行预测时,返回的是类别的索引,即该样本所属的类别标签。以卷积神经网络中的图片分类为例说明,代码如下:

对Keras中predict()方法和predict_classes()方法的区别说明

补充知识:keras中model.evaluate、model.predict和model.predict_classes的区别

1、model.evaluate 用于评估您训练的模型。它的输出是model的acc和loss,而不是对输入数据的预测。

2、model.predict 实际预测,输入为test sample,输出为label。

3、在keras中有两个预测函数model.predict_classes(test) 和model.predict(test)。如果标签经过了one-hot编码,如[1,2,3,4,5]是标签类别,经编码后为[1 0 0 0 0],[0 1 0 0 0]…[0 0 0 0 1]。

model.predict_classes(test)预测的是类别,打印出来的值就是类别号。并且只能用于序列模型来预测,不能用于函数式模型。

而model.predict(test)输出的还是5个编码值,要经过argmax(predict_test,axis=1)转化为类别号。

以上这篇对keras中predict()方法和predict_classes()方法的区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。