epoll源码剖析
(主要基于Linux-2.6.11.12版本进行分析。)
1. 主要数据结构
struct eventpoll {
/* Protect the this structure access */
rwlock_t lock;
/*
* This semaphore is used to ensure that files are not removed
* while epoll is using them. This is read-held during the event
* collection loop and it is write-held during the file cleanup
* path, the epoll file exit code and the ctl operations.
*/
struct rw_semaphore sem;
/* Wait queue used by sys_epoll_wait() */
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
struct list_head rdllist;
/* RB-Tree root used to store monitored fd structs */
struct rb_root rbr;
};
struct epitem {
/* RB-Tree node used to link this structure to the eventpoll rb-tree */
struct rb_node rbn;
/* List header used to link this structure to the eventpoll ready list */
struct list_head rdllink;
/* The file descriptor information this item refers to */
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
int nwait;
/* List containing poll wait queues */
struct list_head pwqlist;
/* The "container" of this item */
struct eventpoll *ep;
/* The structure that describe the interested events and the source fd */
struct epoll_event event;
/*
* Used to keep track of the usage count of the structure. This avoids
* that the structure will desappear from underneath our processing.
*/
atomic_t usecnt;
/* List header used to link this item to the "struct file" items list */
struct list_head fllink;
/* List header used to link the item to the transfer list */
struct list_head txlink;
/*
* This is used during the collection/transfer of events to userspace
* to pin items empty events set.
*/
unsigned int revents;
};
struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head llink;
/* The "base" pointer is set to the container "struct epitem" */
void *base;
/*
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_t wait;
/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;
};
文件系统结构
/**
* 对内核支持的每一种文件系统,存在一个这样的结构对其进行描述。
*/
struct file_system_type {
/**
* 文件系统类型的名称
*/
const char *name;
/**
* 此文件系统类型的属性
*/
int fs_flags;
/**
* 函数指针,当安装此类型的文件系统时,就由VFS调用此例程从设备上将此文件系统的superblock读入内存中
*/
struct super_block *(*get_sb) (struct file_system_type *, int,
const char *, void *);
/**
* 删除超级块的方法。
*/
void (*kill_sb) (struct super_block *);
/**
* 指向实现文件系统的模块的指针。
*/
struct module *owner;
/**
* 下一个文件系统指针。
*/
struct file_system_type * next;
/**
* 具有相同文件系统类型的超级块对象链表的头。
*/
struct list_head fs_supers;
};
基本数据结构关系
2. eventpoll_init()
epoll开始的准备工作由eventpoll_init完成,
static int __init eventpoll_init(void)
{
int error;
init_MUTEX(&epsem);
/* Initialize the structure used to perform safe poll wait head wake ups */
ep_poll_safewake_init(&psw);
/* Allocates slab cache used to allocate "struct epitem" items */
epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
NULL, NULL);
/* Allocates slab cache used to allocate "struct eppoll_entry" */
pwq_cache = kmem_cache_create("eventpoll_pwq",
sizeof(struct eppoll_entry), 0,
EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
/*
* Register the virtual file system that will be the source of inodes
* for the eventpoll files
*/
error = register_filesystem(&eventpoll_fs_type);
if (error)
goto epanic;
/* Mount the above commented virtual file system */
eventpoll_mnt = kern_mount(&eventpoll_fs_type);
error = PTR_ERR(eventpoll_mnt);
if (IS_ERR(eventpoll_mnt))
goto epanic;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
current));
return 0;
epanic:
panic("eventpoll_init() failed\n");
}
2.1 kmem_cache_create()
/* Allocates slab cache used to allocate "struct epitem" items */
epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
NULL, NULL);
/* Allocates slab cache used to allocate "struct eppoll_entry" */
pwq_cache = kmem_cache_create("eventpoll_pwq",
sizeof(struct eppoll_entry), 0,
EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
该函数是slab分配器接口,即创建一个新的高速缓存——内存池。数据结构类型为struct epitem和struct epoll_entry。
epoll在被内核初始化时(操作系统启动),同时会开辟出epoll自己的内核告诉cache区,用于安置每一个我们想监控的socket,这些socket会以红黑树的形式保存在内核cache张总,以支持快速的查找、插入、删除。
这个内核高速缓冲区,就是建立连续的物理内存页,然后在之上建立slab层,简单地说,就是物理上分配好你想要的size大小的内存对象,每次使用时都是使用空闲的已分配好的对象。
2.2 register_filesystem()
注册文件系统,将相应的file_system_type加入到链表中。
error = register_filesystem(&eventpoll_fs_type);
在内核中,一切皆文件。所以,epoll向内核注册了一个文件系统,用于存储上述的被监控socket。
当调用epoll_create时,就会在这个虚拟的epoll文件系统中创建一个file结点。当然这个file不是普通文件,它只服务于epoll。
3. sys_epoll_create()
asmlinkage long sys_epoll_create(int size)
{
int error, fd;
struct inode *inode;
struct file *file;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
current, size));
/* Sanity check on the size parameter */
error = -EINVAL;
if (size <= 0)
goto eexit_1;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure, and inode and a free file descriptor.
*/
error = ep_getfd(&fd, &inode, &file);
if (error)
goto eexit_1;
/* Setup the file internal data structure ( "struct eventpoll" ) */
error = ep_file_init(file);
if (error)
goto eexit_2;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
current, size, fd));
return fd;
eexit_2:
sys_close(fd);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
current, size, error));
return error;
}
epoll极其高效的原因:
由于在调用epoll_create时,内核除了帮我们在epoll文件系统中创建了个file结点,在内核cache里建了一个红黑树用于存储以后epoll_ctl传来的socket外,还会再建立一个list链表,用于存储准备就绪的事件,当epoll_wait调用时,仅仅观察这个list链表有没有数据即可。有数据就返回,没有就sleep,等到timeout时间到后,即使链表没有数据也返回。
所以,epoll_wait非常高效。
3.1 ep_getfd()
在第一次调用epoll_create时,是要创建新的inode、新的file、新的fd。
static int ep_getfd(int *efd, struct inode **einode, struct file **efile)
{
struct qstr this;
char name[32];
struct dentry *dentry;
struct inode *inode;
struct file *file;
int error, fd;
/* Get an ready to use file */
error = -ENFILE;
file = get_empty_filp();
if (!file)
goto eexit_1;
/* Allocates an inode from the eventpoll file system */
inode = ep_eventpoll_inode();
error = PTR_ERR(inode);
if (IS_ERR(inode))
goto eexit_2;
/* Allocates a free descriptor to plug the file onto */
error = get_unused_fd();
if (error < 0)
goto eexit_3;
fd = error;
/*
* Link the inode to a directory entry by creating a unique name
* using the inode number.
*/
error = -ENOMEM;
sprintf(name, "[%lu]", inode->i_ino);
this.name = name;
this.len = strlen(name);
this.hash = inode->i_ino;
dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
if (!dentry)
goto eexit_4;
dentry->d_op = &eventpollfs_dentry_operations;
d_add(dentry, inode);
file->f_vfsmnt = mntget(eventpoll_mnt);
file->f_dentry = dentry;
file->f_mapping = inode->i_mapping;
file->f_pos = 0;
file->f_flags = O_RDONLY;
file->f_op = &eventpoll_fops;
file->f_mode = FMODE_READ;
file->f_version = 0;
file->private_data = NULL;
/* Install the new setup file into the allocated fd. */
fd_install(fd, file);
*efd = fd;
*einode = inode;
*efile = file;
return 0;
eexit_4:
put_unused_fd(fd);
eexit_3:
iput(inode);
eexit_2:
put_filp(file);
eexit_1:
return error;
}
3.2 ep_file_init()
设置文件内部数据结构,即struct eventpoll。
static int ep_file_init(struct file *file)
{
struct eventpoll *ep;
if (!(ep = kmalloc(sizeof(struct eventpoll), GFP_KERNEL)))
return -ENOMEM;
memset(ep, 0, sizeof(*ep));
rwlock_init(&ep->lock);
init_rwsem(&ep->sem);
init_waitqueue_head(&ep->wq);
init_waitqueue_head(&ep->poll_wait);
INIT_LIST_HEAD(&ep->rdllist);
ep->rbr = RB_ROOT;
file->private_data = ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_file_init() ep=%p\n",
current, ep));
return 0;
}
file->private_data = ep,这里进行初始化,为了可以在函数sys_epoll_ctl直接获取eventpoll文件中的私有数据。4. sys_epoll_ctl()
在函数sys_epoll_ctl中,如果增加socket句柄,则检查在红黑树中是否存在,存在就立即返回;不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据。
asmlinkage long
sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
{
int error;
struct file *file, *tfile;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
current, epfd, op, fd, event));
error = -EFAULT;
if (EP_OP_HASH_EVENT(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto eexit_1;
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
file = fget(epfd);
if (!file)
goto eexit_1;
/* Get the "struct file *" for the target file */
tfile = fget(fd);
if (!tfile)
goto eexit_2;
/* The target file descriptor must support poll */
error = -EPERM;
if (!tfile->f_op || !tfile->f_op->poll)
goto eexit_3;
/*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
if (file == tfile || !IS_FILE_EPOLL(file))
goto eexit_3;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = file->private_data;
down_write(&ep->sem);
/* Try to lookup the file inside our hash table */
epi = ep_find(ep, tfile, fd);
error = -EINVAL;
switch (op) {
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tfile, fd);
} else
error = -EEXIST;
break;
case EPOLL_CTL_DEL:
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
/*
* The function ep_find() increments the usage count of the structure
* so, if this is not NULL, we need to release it.
*/
if (epi)
ep_release_epitem(epi);
up_write(&ep->sem);
eexit_3:
fput(tfile);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
current, epfd, op, fd, event, error));
return error;
}
4.1 ep = file->private_data;
获取eventpoll文件中的私有数据,该数据在event_create中创建。
4.2 ep_find()
在eventpoll中存储文件描述符信息的红黑树中查找指定fd对应的epitem实例。
一个新创建的epoll文件带有一个struct eventpoll结构,这个结构再挂一个红黑树,而这个红黑树就是每次epoll_ctl时fd存放的地方。
ep_find的实现,是struct eventpoll的rbr成员(strut rb_root),原来就是一个红黑树的根。而红黑树上挂的是struct epitem。
4.3 ep_insert()
首先,进行ep_find,
如果找到了struct epitem而用户操作是ADD,那么返回-EEXIST;
如果是DEL,则ep_remove;
如果找不到struct epitem而用户操作是ADD,就ep_insert创建并插入一个。
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd)
{
int error, revents, pwake = 0;
unsigned long flags;
struct epitem *epi;
struct ep_pqueue epq;
error = -ENOMEM;
if (!(epi = EPI_MEM_ALLOC()))
goto eexit_1;
/* Item initialization follow here ... */
EP_RB_INITNODE(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->txlink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
EP_SET_FFD(&epi->ffd, tfile, fd);
epi->event = *event;
atomic_set(&epi->usecnt, 1);
epi->nwait = 0;
/* Initialize the poll table using the queue callback */
epq.epi = epi;
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);/////
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function.
*/
revents = tfile->f_op->poll(tfile, &epq.pt);/////
........
}
4.3.1 EPI_MEM_ALLOC()
首先,申请一个epi空间。
2.3.2 进行初始化
EP_RB_INITNODE(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->txlink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
2.3.3 ep_ptable_queue_proc()
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
{
struct epitem *epi = EP_ITEM_FROM_EPQUEUE(pt);
struct eppoll_entry *pwq;
if (epi->nwait >= 0 && (pwq = PWQ_MEM_ALLOC())) {
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
函数init_waitqueue_func_entry()中定义等待队列上的唤醒函数为ep_poll_callback,并对等待队列进行初始化。
ep_poll_callback()
把红黑树上收到event的epitem(代表每个fd)插入ep->rdlist中,
这样,当epoll_wait返回时,rdlist里就都是就绪的fd了。
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = EP_ITEM_FROM_WAIT(wait);
struct eventpoll *ep = epi->ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
current, epi->file, epi, ep));
write_lock_irqsave(&ep->lock, flags);
/*
* If the event mask does not contain any poll(2) event, we consider the
* descriptor to be disabled. This condition is likely the effect of the
* EPOLLONESHOT bit that disables the descriptor when an event is received,
* until the next EPOLL_CTL_MOD will be issued.
*/
if (!(epi->event.events & ~EP_PRIVATE_BITS))
goto is_disabled;
/* If this file is already in the ready list we exit soon */
if (EP_IS_LINKED(&epi->rdllink))
goto is_linked;
list_add_tail(&epi->rdllink, &ep->rdllist);
is_linked:
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
is_disabled:
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
return 1;
}
EP_PRIVATE_BITS,即宏替换为(EPOLLONESHOT | EPOLLET).
list_add_tail(&epi->rdlink, &ep->rdlist);
epi->rdlink插入到ep->rdlist之前; struct epitem放到放到struct eventpoll的rdlist中去。
4. sys_epoll_wait()
asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
int maxevents, int timeout)
{
int error;
struct file *file;
struct eventpoll *ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
current, epfd, events, maxevents, timeout));
/* The maximum number of event must be greater than zero */
if (maxevents <= 0)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
if ((error = verify_area(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))))
goto eexit_1;
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
file = fget(epfd);
if (!file)
goto eexit_1;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (!IS_FILE_EPOLL(file))
goto eexit_2;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = file->private_data;
/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
current, epfd, events, maxevents, timeout, error));
return error;
}
4.1 maxevents
事件个数一定大于0,否则返回-EINVAL。
4.2 verify_area()
/**
* 函数verify_area执行与access_ok宏类似的检查,虽然它被认为是陈旧过时的
* 但是在源代码中仍然被广泛使用。
*/
static inline int verify_area(int type, const void __user * addr, unsigned long size)
{
return access_ok(type,addr,size) ? 0 : -EFAULT;
}
对系统调用所传递地址的检查是通过access_ok宏实现的。
· 它由两个分别为addr和size的参数。
· 该宏检查addr到addr+size-1之间的地址区间。
4.3 file = fget(epfd)
获取epfd对应的file实例。
然后接着调用IS_FILE_EPOLL(file),判断是否为eventpoll的file,
即(f)->f_op == &eventpoll_fops.
4.4 ep_poll
这个函数是epoll的核心函数,接下来进行分析。
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res, eavail;
unsigned long flags;
long jtimeout;
wait_queue_t wait;
/*
* Calculate the timeout by checking for the "infinite" value ( -1 )
* and the overflow condition. The passed timeout is in milliseconds,
* that why (t * HZ) / 1000.
*/
jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ?
MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000;
retry:
write_lock_irqsave(&ep->lock, flags);
res = 0;
if (list_empty(&ep->rdllist)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
init_waitqueue_entry(&wait, current);
add_wait_queue(&ep->wq, &wait);
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
if (!list_empty(&ep->rdllist) || !jtimeout)
break;
if (signal_pending(current)) {
res = -EINTR;
break;
}
write_unlock_irqrestore(&ep->lock, flags);
jtimeout = schedule_timeout(jtimeout);
write_lock_irqsave(&ep->lock, flags);
}
remove_wait_queue(&ep->wq, &wait);
set_current_state(TASK_RUNNING);
}
/* Is it worth to try to dig for events ? */
eavail = !list_empty(&ep->rdllist);
write_unlock_irqrestore(&ep->lock, flags);
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
!(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
goto retry;
return res;
}
首先,调用list_empty(&ep->rdlist),判断ep->rdlist是否为NULL。
eventpoll下的struct list_head rdlist,双链表中存放着将要通过epoll_wait返回给用户的满足条件的事件。
而struct rb_root rbr,是红黑树的根结点,树中存储所有添加到epoll中的需要监控的事件。
如果没有事件到来,不会返回给调用方;
一直在这里睡眠,直到事件发生,被ep_poll_callback()唤醒。
init_waitqueue_entry()
初始化wait_queue_t结构的变量。
add_wait_queue()
将wait进程插入等待队列链表的第一个位置。
4.4.1 set_current_state()
for循环中,设置TASK_INTERRUPTIBLE状态,其原因是:如果ep_poll_callback()发生唤醒,不会去休眠。
4.4.2 signal_pending()
如果进程描述符所表示的进程有非阻塞的挂起信号,就返回1。否则返回0。
该函数只是通过检查进程的TIF_SIGPENDING标志。
static inline int signal_pending(struct task_struct *p)
{
return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}
4.4.3 remove_wait_queue()
将wait进程从等待队列链表中删除。
4.4.4 ep_event_transfer()
把rdlist中的fd拷贝到用户空间。
static int ep_events_transfer(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
{
int eventcnt = 0;
struct list_head txlist;
INIT_LIST_HEAD(&txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
*/
down_read(&ep->sem);
/* Collect/extract ready items */
if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
/* Build result set in userspace */
eventcnt = ep_send_events(ep, &txlist, events);
/* Reinject ready items into the ready list */
ep_reinject_items(ep, &txlist);
}
up_read(&ep->sem);
return eventcnt;
}
4.4.4.1 ep_collect_ready_items()
把rdlist里的fd挪到txlist中(挪完后rdlist就空了)。
static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
{
int nepi;
unsigned long flags;
struct list_head *lsthead = &ep->rdllist, *lnk;
struct epitem *epi;
write_lock_irqsave(&ep->lock, flags);
for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
epi = list_entry(lnk, struct epitem, rdllink);
lnk = lnk->next;
/* If this file is already in the ready list we exit soon */
if (!EP_IS_LINKED(&epi->txlink)) {
/*
* This is initialized in this way so that the default
* behaviour of the reinjecting code will be to push back
* the item inside the ready list.
*/
epi->revents = epi->event.events;
/* Link the ready item into the transfer list */
list_add(&epi->txlink, txlist);
nepi++;
/*
* Unlink the item from the ready list.
*/
EP_LIST_DEL(&epi->rdllink);
}
}
write_unlock_irqrestore(&ep->lock, flags);
return nepi;
}
4.4.4.2 ep_send_events()
把txlist中的fd拷贝到用户空间。
static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
struct epoll_event __user *events)
{
int eventcnt = 0;
unsigned int revents;
struct list_head *lnk;
struct epitem *epi;
/*
* We can loop without lock because this is a task private list.
* The test done during the collection loop will guarantee us that
* another task will not try to collect this file. Also, items
* cannot vanish during the loop because we are holding "sem".
*/
list_for_each(lnk, txlist) {
epi = list_entry(lnk, struct epitem, txlink);
/*
* Get the ready file event set. We can safely use the file
* because we are holding the "sem" in read and this will
* guarantee that both the file and the item will not vanish.
*/
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
/*
* Set the return event set for the current file descriptor.
* Note that only the task task was successfully able to link
* the item to its "txlist" will write this field.
*/
epi->revents = revents & epi->event.events;
if (epi->revents) {
if (__put_user(epi->revents,
&events[eventcnt].events) ||
__put_user(epi->event.data,
&events[eventcnt].data))
return -EFAULT;
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
eventcnt++;
}
}
return eventcnt;
}
在ep_send_events()中,
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
调用函数scull_p_poll,也就是其中的poll_wait()函数,
POLL方法是poll、epoll和select这三个系统调用的后端实现。可用来查询某个或多个文件描述符上的读取或写入是否会被阻塞。
poll方式返回一个位掩码mask,用来指出非阻塞的读取或写入是否可能。并且会向内核提供将调用进程置于休眠状态直到IO变为可能时的信息,并且驱动程序中将POLL方法定义为NULL,则设备会被认为既可读也可写,并且不会阻塞。
设备先要把current(当前进程)挂在inq和outq两个队列上(这个“挂”操作是wait回调函数指针做的),然后等设备唤醒,唤醒后就能通过mask拿到事件掩码了。
这里的mask参数就是负责事件掩码。
4.4.4.3 ep_reinject_items()
把一部分fd从txlist里“返还”给rdlist以便下次还能从rdlist里发现它。
static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
{
int ricnt = 0, pwake = 0;
unsigned long flags;
struct epitem *epi;
write_lock_irqsave(&ep->lock, flags);
while (!list_empty(txlist)) {
epi = list_entry(txlist->next, struct epitem, txlink);
/* Unlink the current item from the transfer list */
EP_LIST_DEL(&epi->txlink);
/*
* If the item is no more linked to the interest set, we don't
* have to push it inside the ready list because the following
* ep_release_epitem() is going to drop it. Also, if the current
* item is set to have an Edge Triggered behaviour, we don't have
* to push it back either.
*/
if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&
(epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ricnt++;
}
}
if (ricnt) {
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
}
函数中进行判断时,
EP_RB_LINKED(epi->rbn) && !(epi->event.events & EPOLLET) && (epi->revents & epi->event.events) && IEP_IS_LINKED(&epi->rdlink),
是哪些“没有标上EPOLLET”(标红代码)且“事件被关注”(标蓝代码)的fd重新被放回了rdlist。
LT模式下,只要一个句柄上事件一次没有处理完,会在以后调用epoll_wait时此次返回这个句柄,从txlist拷贝到用户空间后,会返还给rdlist。
而ET模式下,仅在第一次返回。
--------------------------------------------------------------------
总结
1. select和poll每次调用这些函数的时候都需要将监控的fd和需要监控的事件从用户空间拷贝到内核空间,非常影响效率。而epoll就是自己保存用户空间拷入的fd和需要监控的事件,只需在调用epoll_ctl的时候就把所有的fd和需要监控的事件只进行一次从用户空间到内核空间的拷贝。
2. poll和select类似,每次调用都返回整个用户注册的事件集合(包括就绪的和未就绪的),应用程序索引就绪文件描述符的时间复杂度为O(n)。而epoll是在内核中维护一个事件表,epoll_wait的events参数返回就绪的事件,时间复杂度为O(1).
3. poll和epoll_wait分别用nfds和maxevents参数指定最多监听多少个文件描述符和事件个数,即65535(cat/proc/sys/fs/file-max)。而select允许监听的最大文件描述符个数为1024.
并发支持完美,不会随着socket的增加而降低效率,也不用在内核空间和用户空间之间做无效的copy操作。
4. poll只能工作在相对低效的LT模式(电平触发),而epoll支持LT和ET模式。
ET 边沿触发:只触发一次,无论缓冲区中是否还有剩余数据,直到有新的数据到达才会被触发,再去读取缓冲区里面的数据。
LT 水平触发(默认): LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket,每次缓冲区都有数据都要触发。
epoll可以监控管道文件,任意文件,不仅仅是socket文件.
5. poll采用轮询方式,即每次调用都要扫描整个注册文件描述符集合,并将其中就绪的文件描述符返回个用户,因此检测就绪事件的时间复杂度是O(n)。epoll则采用回调方式。内核检测到就绪的文件描述符,将触发回调函数,回调函数将该文件描述符上对应的事件插入内核就绪事件队列。内核最后将该就绪事件队列的内容拷贝到用户空间。时间复杂度为O(1).
6. 能处理EPOLLONESHOT事件
----------------------------------
应用场景
1. epoll_wait适用于I/O密集型,即连接数量多,但活动连接较少的情况。因为epoll则采用回调方式。内核检测到就绪的文件描述符,将触发回调函数,回调函数将该文件描述符上对应的事件插入内核就绪事件队列。内核最后将该就绪事件队列的内容拷贝到用户空间。
但是,当活动连接较多时,epoll_wait的效率未必比select和poll高,因为此时回调函数被触发的过于频繁。
2. 并发支持完美,不会随着socket的增加而降低效率,也不用在内核空间和用户空间之间做无效的copy操作。
上一篇: 李子是寒性水果吗