欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python glom模块的使用简介

程序员文章站 2022-03-10 21:13:20
工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些“高级”技能。前不久看到一位 python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家。这个模块就叫...

工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些“高级”技能。前不久看到一位 python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家。

这个模块就叫 glom ,是 python 处理数据的一个小模块,它具有如下特点:

  • 嵌套结构并基于路径访问
  • 使用轻量级的pythonic规范进行声明性数据转换
  • 可读、有意义的错误信息
  • 内置数据探测和调试功能

看起来比较抽象,对不对?下面我们用实例来给大家演示一下。

安装

作为 python 内置模块,相信你一定知道怎么安装:

pip3 install glom

几秒钟就搞定!

简单使用

我们来看看最简单的用法:

d = {"a": {"b": {"c": 1}}}
print(glom(d, "a.b.c")) # 1

在这里,我们有一个嵌套三层的 json 结构,我们想获取最里层的 c 对应的值,正常的写法应该是:

print(d["a"]["b"]["c"])

如果到这里,我说 glom 比传统方式好一些,因为你不用一层层地写中括号和引号,你会不会嗤之以鼻?

好,我们再来看看下面的情况:

d = {"a": {"b": none}}
print(d["a"]["b"]["c"])

遍历到一个 none 对象,你会收到下面的错误:

traceback (most recent call last):
  file "/users/cxhuan/documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 10, in <module>
    print(d["a"]["b"]["c"])
typeerror: 'nonetype' object is not subscriptable

我们来看看 glom 的处理方式:

from glom import glom

d = {"a": {"b": none}}
print(glom(d, "a.b.c"))

同样地,glom 不能把错误的输出成对的,你会得到以下错误:

traceback (most recent call last):
  file "/users/cxhuan/documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 11, in <module>
    print(glom(d, "a.b.c"))
  file "/library/frameworks/python.framework/versions/3.7/lib/python3.7/site-packages/glom/core.py", line 2181, in glom
    raise err
glom.core.pathaccesserror: error raised while processing, details below.
 target-spec trace (most recent last):
 - target: {'a': {'b': none}}
 - spec: 'a.b.c'
glom.core.pathaccesserror: could not access 'c', part 2 of path('a', 'b', 'c'), got error: attributeerror("'nonetype' object has no attribute 'c'")

如果你仔细看报错内容,你就会发现这报错内容极其详细,一目了然,这对于找程序 bug 简直是神器!

复杂用法

刚才简单的例子,让大家对 glom 有了直观的认识,接下来我们看看 glom 的 glom 方法的定义:

glom(target, spec, **kwargs)

我们看看参数的含义:

  • target:目标数据,可以是dict、list或者其他任何对象
  • spec:是我们希望输出的内容

下面我们来使用这个方法。

先看一个例子。我们有一个 dict ,想要获取出 所有 name 的值,我们可以通过 glom 来实现:

data = {"student": {"info": [{"name": "张三"}, {"name": "李四"}]}}
info = glom(data, ("student.info", ["name"]))
print(info) # ['张三', '李四']

如果用传统方式的话,我们可能会需要遍历才能获取到,但是使用 glom ,我们只需要一行代码就可以了,输出是一个数组。

如果你不想输出数组,而是想要一个 dict 的话,那也是很简单的:

info = glom(data, {"info": ("student.info", ["name"])})
print(info) # {'info': ['张三', '李四']

我们只需要将原来的数组赋值给一个字典来接收就好了。

搞定麻烦需求

假如我现在有两组数据,我要取出 name 的值:

data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}

spec_1 = {"name": ("school.student", ["name"])}
spec_2 = {"name": ("school.teacher", ["name"])}
print(glom(data_1, spec_1)) # {'name': ['张三', '李四']}
print(glom(data_2, spec_2)) # {'name': ['王老师', '赵老师']}

我们通常是这么写,对吗?假如我们有好多组数据,每组都是类似的取法呢?这时候我们就会想办法避免一个个重复写 n 行参数了,我们可以使用 coalesce 方法:

data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}

spec = {"name": (coalesce("school.student", "school.teacher"), ["name"])}
 
print(glom(data_1, spec)) # {'name': ['张三', '李四']}
print(glom(data_2, spec)) # {'name': ['王老师', '赵老师']}

我们可以用 coalesce 把多个需求聚合起来,然后针对同一个 spec 来取值就行了。

下面再来一个大杀器——取值计算。glom 还可以对取值进行简单计算,我们来看例子:

data = {"school": {"student": [{"name": "张三", "age": 8}, {"name": "李四", "age": 10}]}}
spec = {"sum_age": ("school.student", ["age"], sum)}
print(glom(data, spec)) # {'sum_age': 18}

总结

介绍了这么多,大家应该知道 glom 的厉害之处了吧,据说很多大佬都喜欢使用呢。其实它还有很多其他的实用功能有待大家去发掘,这里就不一一介绍了。

以上就是python glom模块的使用简介的详细内容,更多关于python glom模块的资料请关注其它相关文章!