高效读取大数据文本文件(上亿行数据)
一.前言
本文是对大数据文本文件读取(按行读取)的优化,目前常规的方案(限于JDK)有三种,第一种LineNumberReader,第二种RandomAccessFile,第三种是内存映射文件(详见http://sgq0085.iteye.com/blog/1318622)在RandomAccessFile基础上调用getChannel().map(...)。
1.LineNumberReader
按行读取,只能从第一行向后遍历,到需要读取的行时开始读入,直到完成;在我的测试用例中,读取1000W行数据每次5万行,用时93秒,效率实测比RandomAccessFile要高,但读取一亿跳数据时效率太低了(因为每次都要从头遍历),因为测试时超过1个小时,放弃测试;
2.RandomAccessFile
实际不适用于这种大数据读取,RandomAccessFile是为了磁盘文件的随机访问,所以效率很低,1000w行测试时用时140秒,一亿行数据测试用时1438秒但由于可以通过getFilePointer方法记录位置,并通过seek方法指定读取位置,所以从理论上比较适用这种大数据按行读取的场景;
RandomAccessFile只能按照8859_1这种方法读取,所以需要对内容重新编码,方法如下
new String(pin.getBytes("8859_1"), "")
3.内存映射文件
由于每行数据大小不同,内存映射文件在这种情况下不适用,其他情况请参考我的博客(详见http://sgq0085.iteye.com/blog/1318622)
二.解决方案
如果在RandomAccessFile基础上,整合内部缓冲区,效率会有提高,测试过程中1000w行数据用时1秒,1亿行数据用时103(比1438秒快了13倍左右)
BufferedRandomAccessFile
网上已经有实现,代码如下:
package com.gqshao.file.io; import java.io.File; import java.io.FileNotFoundException; import java.io.IOException; import java.io.RandomAccessFile; import java.util.Arrays; public class BufferedRandomAccessFile extends RandomAccessFile { static final int LogBuffSz_ = 16; // 64K buffer public static final int BuffSz_ = (1 << LogBuffSz_); static final long BuffMask_ = ~(((long) BuffSz_) - 1L); private String path_; /* * This implementation is based on the buffer implementation in Modula-3's * "Rd", "Wr", "RdClass", and "WrClass" interfaces. */ private boolean dirty_; // true iff unflushed bytes exist private boolean syncNeeded_; // dirty_ can be cleared by e.g. seek, so track sync separately private long curr_; // current position in file private long lo_, hi_; // bounds on characters in "buff" private byte[] buff_; // local buffer private long maxHi_; // this.lo + this.buff.length private boolean hitEOF_; // buffer contains last file block? private long diskPos_; // disk position /* * To describe the above fields, we introduce the following abstractions for * the file "f": * * len(f) the length of the file curr(f) the current position in the file * c(f) the abstract contents of the file disk(f) the contents of f's * backing disk file closed(f) true iff the file is closed * * "curr(f)" is an index in the closed interval [0, len(f)]. "c(f)" is a * character sequence of length "len(f)". "c(f)" and "disk(f)" may differ if * "c(f)" contains unflushed writes not reflected in "disk(f)". The flush * operation has the effect of making "disk(f)" identical to "c(f)". * * A file is said to be *valid* if the following conditions hold: * * V1. The "closed" and "curr" fields are correct: * * f.closed == closed(f) f.curr == curr(f) * * V2. The current position is either contained in the buffer, or just past * the buffer: * * f.lo <= f.curr <= f.hi * * V3. Any (possibly) unflushed characters are stored in "f.buff": * * (forall i in [f.lo, f.curr): c(f)[i] == f.buff[i - f.lo]) * * V4. For all characters not covered by V3, c(f) and disk(f) agree: * * (forall i in [f.lo, len(f)): i not in [f.lo, f.curr) => c(f)[i] == * disk(f)[i]) * * V5. "f.dirty" is true iff the buffer contains bytes that should be * flushed to the file; by V3 and V4, only part of the buffer can be dirty. * * f.dirty == (exists i in [f.lo, f.curr): c(f)[i] != f.buff[i - f.lo]) * * V6. this.maxHi == this.lo + this.buff.length * * Note that "f.buff" can be "null" in a valid file, since the range of * characters in V3 is empty when "f.lo == f.curr". * * A file is said to be *ready* if the buffer contains the current position, * i.e., when: * * R1. !f.closed && f.buff != null && f.lo <= f.curr && f.curr < f.hi * * When a file is ready, reading or writing a single byte can be performed * by reading or writing the in-memory buffer without performing a disk * operation. */ /** * Open a new <code>BufferedRandomAccessFile</code> on <code>file</code> * in mode <code>mode</code>, which should be "r" for reading only, or * "rw" for reading and writing. */ public BufferedRandomAccessFile(File file, String mode) throws IOException { this(file, mode, 0); } public BufferedRandomAccessFile(File file, String mode, int size) throws IOException { super(file, mode); path_ = file.getAbsolutePath(); this.init(size); } /** * Open a new <code>BufferedRandomAccessFile</code> on the file named * <code>name</code> in mode <code>mode</code>, which should be "r" for * reading only, or "rw" for reading and writing. */ public BufferedRandomAccessFile(String name, String mode) throws IOException { this(name, mode, 0); } public BufferedRandomAccessFile(String name, String mode, int size) throws FileNotFoundException { super(name, mode); path_ = name; this.init(size); } private void init(int size) { this.dirty_ = false; this.lo_ = this.curr_ = this.hi_ = 0; this.buff_ = (size > BuffSz_) ? new byte[size] : new byte[BuffSz_]; this.maxHi_ = (long) BuffSz_; this.hitEOF_ = false; this.diskPos_ = 0L; } public String getPath() { return path_; } public void sync() throws IOException { if (syncNeeded_) { flush(); getChannel().force(true); syncNeeded_ = false; } } // public boolean isEOF() throws IOException // { // assert getFilePointer() <= length(); // return getFilePointer() == length(); // } public void close() throws IOException { this.flush(); this.buff_ = null; super.close(); } /** * Flush any bytes in the file's buffer that have not yet been written to * disk. If the file was created read-only, this method is a no-op. */ public void flush() throws IOException { this.flushBuffer(); } /* Flush any dirty bytes in the buffer to disk. */ private void flushBuffer() throws IOException { if (this.dirty_) { if (this.diskPos_ != this.lo_) super.seek(this.lo_); int len = (int) (this.curr_ - this.lo_); super.write(this.buff_, 0, len); this.diskPos_ = this.curr_; this.dirty_ = false; } } /* * Read at most "this.buff.length" bytes into "this.buff", returning the * number of bytes read. If the return result is less than * "this.buff.length", then EOF was read. */ private int fillBuffer() throws IOException { int cnt = 0; int rem = this.buff_.length; while (rem > 0) { int n = super.read(this.buff_, cnt, rem); if (n < 0) break; cnt += n; rem -= n; } if ((cnt < 0) && (this.hitEOF_ = (cnt < this.buff_.length))) { // make sure buffer that wasn't read is initialized with -1 Arrays.fill(this.buff_, cnt, this.buff_.length, (byte) 0xff); } this.diskPos_ += cnt; return cnt; } /* * This method positions <code>this.curr</code> at position <code>pos</code>. * If <code>pos</code> does not fall in the current buffer, it flushes the * current buffer and loads the correct one.<p> * * On exit from this routine <code>this.curr == this.hi</code> iff <code>pos</code> * is at or past the end-of-file, which can only happen if the file was * opened in read-only mode. */ public void seek(long pos) throws IOException { if (pos >= this.hi_ || pos < this.lo_) { // seeking outside of current buffer -- flush and read this.flushBuffer(); this.lo_ = pos & BuffMask_; // start at BuffSz boundary this.maxHi_ = this.lo_ + (long) this.buff_.length; if (this.diskPos_ != this.lo_) { super.seek(this.lo_); this.diskPos_ = this.lo_; } int n = this.fillBuffer(); this.hi_ = this.lo_ + (long) n; } else { // seeking inside current buffer -- no read required if (pos < this.curr_) { // if seeking backwards, we must flush to maintain V4 this.flushBuffer(); } } this.curr_ = pos; } public long getFilePointer() { return this.curr_; } public long length() throws IOException { // max accounts for the case where we have written past the old file length, but not yet flushed our buffer return Math.max(this.curr_, super.length()); } public int read() throws IOException { if (this.curr_ >= this.hi_) { // test for EOF // if (this.hi < this.maxHi) return -1; if (this.hitEOF_) return -1; // slow path -- read another buffer this.seek(this.curr_); if (this.curr_ == this.hi_) return -1; } byte res = this.buff_[(int) (this.curr_ - this.lo_)]; this.curr_++; return ((int) res) & 0xFF; // convert byte -> int } public int read(byte[] b) throws IOException { return this.read(b, 0, b.length); } public int read(byte[] b, int off, int len) throws IOException { if (this.curr_ >= this.hi_) { // test for EOF // if (this.hi < this.maxHi) return -1; if (this.hitEOF_) return -1; // slow path -- read another buffer this.seek(this.curr_); if (this.curr_ == this.hi_) return -1; } len = Math.min(len, (int) (this.hi_ - this.curr_)); int buffOff = (int) (this.curr_ - this.lo_); System.arraycopy(this.buff_, buffOff, b, off, len); this.curr_ += len; return len; } public void write(int b) throws IOException { if (this.curr_ >= this.hi_) { if (this.hitEOF_ && this.hi_ < this.maxHi_) { // at EOF -- bump "hi" this.hi_++; } else { // slow path -- write current buffer; read next one this.seek(this.curr_); if (this.curr_ == this.hi_) { // appending to EOF -- bump "hi" this.hi_++; } } } this.buff_[(int) (this.curr_ - this.lo_)] = (byte) b; this.curr_++; this.dirty_ = true; syncNeeded_ = true; } public void write(byte[] b) throws IOException { this.write(b, 0, b.length); } public void write(byte[] b, int off, int len) throws IOException { while (len > 0) { int n = this.writeAtMost(b, off, len); off += n; len -= n; this.dirty_ = true; syncNeeded_ = true; } } /* * Write at most "len" bytes to "b" starting at position "off", and return * the number of bytes written. */ private int writeAtMost(byte[] b, int off, int len) throws IOException { if (this.curr_ >= this.hi_) { if (this.hitEOF_ && this.hi_ < this.maxHi_) { // at EOF -- bump "hi" this.hi_ = this.maxHi_; } else { // slow path -- write current buffer; read next one this.seek(this.curr_); if (this.curr_ == this.hi_) { // appending to EOF -- bump "hi" this.hi_ = this.maxHi_; } } } len = Math.min(len, (int) (this.hi_ - this.curr_)); int buffOff = (int) (this.curr_ - this.lo_); System.arraycopy(b, off, this.buff_, buffOff, len); this.curr_ += len; return len; } }
三.测试
1.FileUtil
用于封装三种方案(LineNumberReader、RandomAccessFile、BufferedRandomAccessFile)的文件读取
package com.gqshao.file.util; import com.google.common.collect.Lists; import com.google.common.collect.Maps; import com.gqshao.file.io.BufferedRandomAccessFile; import org.apache.commons.io.IOUtils; import org.apache.commons.lang3.StringUtils; import java.io.*; import java.util.List; import java.util.Map; public class FileUtil { /** * 通过BufferedRandomAccessFile读取文件,推荐 * * @param file 源文件 * @param encoding 文件编码 * @param pos 偏移量 * @param num 读取量 * @return pins文件内容,pos当前偏移量 */ public static Map<String, Object> BufferedRandomAccessFileReadLine(File file, String encoding, long pos, int num) { Map<String, Object> res = Maps.newHashMap(); List<String> pins = Lists.newArrayList(); res.put("pins", pins); BufferedRandomAccessFile reader = null; try { reader = new BufferedRandomAccessFile(file, "r"); reader.seek(pos); for (int i = 0; i < num; i++) { String pin = reader.readLine(); if (StringUtils.isBlank(pin)) { break; } pins.add(new String(pin.getBytes("8859_1"), encoding)); } res.put("pos", reader.getFilePointer()); } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeQuietly(reader); } return res; } /** * 通过RandomAccessFile读取文件,能出来大数据文件,效率低 * * @param file 源文件 * @param encoding 文件编码 * @param pos 偏移量 * @param num 读取量 * @return pins文件内容,pos当前偏移量 */ public static Map<String, Object> readLine(File file, String encoding, long pos, int num) { Map<String, Object> res = Maps.newHashMap(); List<String> pins = Lists.newArrayList(); res.put("pins", pins); RandomAccessFile reader = null; try { reader = new RandomAccessFile(file, "r"); reader.seek(pos); for (int i = 0; i < num; i++) { String pin = reader.readLine(); if (StringUtils.isBlank(pin)) { break; } pins.add(new String(pin.getBytes("8859_1"), encoding)); } res.put("pos", reader.getFilePointer()); } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeQuietly(reader); } return res; } /** * 使用LineNumberReader读取文件,1000w行比RandomAccessFile效率高,无法处理1亿条数据 * * @param file 源文件 * @param encoding 文件编码 * @param index 开始位置 * @param num 读取量 * @return pins文件内容 */ public static List<String> readLine(File file, String encoding, int index, int num) { List<String> pins = Lists.newArrayList(); LineNumberReader reader = null; try { reader = new LineNumberReader(new InputStreamReader(new FileInputStream(file), encoding)); int lines = 0; while (true) { String pin = reader.readLine(); if (StringUtils.isBlank(pin)) { break; } if (lines >= index) { if (StringUtils.isNotBlank(pin)) { pins.add(pin); } } if (num == pins.size()) { break; } lines++; } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeQuietly(reader); } return pins; } }
2.RandomAccessFileTest
测试方法,涉及到的randomFile只是一个掺杂中文的文本文件,可以自己随便写一个
package com.gqshao.file; import com.gqshao.file.util.FileUtil; import org.apache.commons.collections.CollectionUtils; import org.apache.commons.collections.MapUtils; import org.apache.commons.io.IOUtils; import org.junit.Test; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.*; import java.util.List; import java.util.Map; public class RandomAccessFileTest { private static final Logger logger = LoggerFactory.getLogger(RandomAccessFileTest.class); private static final String ENCODING = "UTF-8"; private static final int NUM = 50000; private static File file = new File(ClassLoader.getSystemResource("").getPath() + File.separator + "test.txt"); private static File randomFile = new File(ClassLoader.getSystemResource("").getPath() + File.separator + "RandomFile.txt"); /** * 生成1000w随机文本文件 */ @Test public void makePin() { String prefix = "_$#"; OutputStreamWriter out = null; try { out = new OutputStreamWriter(new FileOutputStream(file, true), ENCODING); // 在1500w里随机1000w数据 for (int j = 0; j < 100000000; j++) { out.write(prefix + (int) (130000000 * Math.random()) + "\n"); } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeQuietly(out); } logger.info(file.getAbsolutePath()); } /** * 测试RandomAccessFile读取文件 */ @Test public void testRandomAccessRead() { long start = System.currentTimeMillis(); // logger.info(String.valueOf(file.exists())); long pos = 0L; while (true) { Map<String, Object> res = FileUtil.readLine(file, ENCODING, pos, NUM); // 如果返回结果为空结束循环 if (MapUtils.isEmpty(res)) { break; } Object po = res.get("pins"); List<String> pins = (List<String>) res.get("pins"); if (CollectionUtils.isNotEmpty(pins)) { // logger.info(Arrays.toString(pins.toArray())); if (pins.size() < NUM) { break; } } else { break; } pos = (Long) res.get("pos"); } logger.info(((System.currentTimeMillis() - start) / 1000) + ""); } /** * 测试RandomAccessFile读取文件 */ @Test public void testBufferedRandomAccessRead() { long start = System.currentTimeMillis(); // logger.info(String.valueOf(file.exists())); long pos = 0L; while (true) { Map<String, Object> res = FileUtil.BufferedRandomAccessFileReadLine(file, ENCODING, pos, NUM); // 如果返回结果为空结束循环 if (MapUtils.isEmpty(res)) { break; } List<String> pins = (List<String>) res.get("pins"); if (CollectionUtils.isNotEmpty(pins)) { // logger.info(Arrays.toString(pins.toArray())); if (pins.size() < NUM) { break; } } else { break; } pos = (Long) res.get("pos"); } logger.info(((System.currentTimeMillis() - start) / 1000) + ""); } /** * 测试普通读取文件 */ @Test public void testCommonRead() { long start = System.currentTimeMillis(); logger.info(String.valueOf(randomFile.exists())); int index = 0; while (true) { List<String> pins = FileUtil.readLine(file, ENCODING, index, NUM); if (CollectionUtils.isNotEmpty(pins)) { // logger.info(Arrays.toString(pins.toArray())); if (pins.size() < NUM) { break; } } else { break; } index += NUM; } logger.info(((System.currentTimeMillis() - start) / 1000) + ""); } }
上一篇: 如何优雅的使用异常