欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于Pytorch的torch.nn.embedding()实现词嵌入层

程序员文章站 2022-06-13 15:59:28
...

nn.embedding()其实是NLP中常用的词嵌入层,在实现词嵌入的过程中embedding层的权重用于随机初始化词的向量,该embedding层的权重参数在后续训练时会不断更新调整,并被优化。

nn.embedding:这是一个矩阵类,该开始时里面初始化了一个随机矩阵,矩阵的长是字典的大小,宽是用来表示字典中每个元素的属性向量,向量的维度根据你想要表示的元素的复杂度而定。类实例化之后可以根据字典中元素的下标来查找元素对应的向量。

因为输入的句子长度不一,有的长有的短。长了截断,不够长补齐(我文中用’'填充,然后在nn.embedding层将其补0,也就是用它来表示无意义的词,这样在后面的max-pooling层也就自然而然会把其过滤掉,这样就不用担心他会影响识别。)


  这里说一下它的用法:
  nn.embedding()的主要3个参数:
  第一个参数num_embeddings是指词表大小
  第二个参数embedding_dim是指你需要用多少维来表示一个符号
  第三个参数pading_idx即需要用0填充的符号在词表中的位置,如下,输出中后面两个’'都有被填充为了0.

import torch
import torch.nn as nn


#词表
word_to_id = {'hello':0, '<PAD>':1,'world':2}
embeds = nn.Embedding(len(word_to_id), 4,padding_idx=word_to_id['<PAD>'])

text = 'hello world <PAD> <PAD>'
hello_idx = torch.LongTensor([word_to_id[i] for i in text.split()])
#词嵌入得到词向量
hello_embed = embeds(hello_idx)
print(hello_embed)

从以下输出可以看到,每行代表句子中一个单词的词嵌入向量,句子中的每个单词都有4维度,最后两个0向量是时用来填充补齐的没意义。
所以embedding层其实相当于将前面用索引编码的句子表示乘上embedding层的可训练权重得到的就是词嵌入的结果

输出:
tensor([[-1.1436, 1.4588, -1.2755, 0.0077],
[-0.9600, -1.9986, -1.1087, -0.1520],
[ 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000]], grad_fn=)

你也可以使用nn.Embedding.from_pretrained()加载预训练好的模型,如word2vec,glove等,在训练的过程中也可以边训练,边更新词向量,加快模型的收敛。本文用的只是简单的nn.embedding()嘿嘿~

然后具体使用 nn.embedding() 时,写在初始化搭建网络里,如下:

class Network(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__(nvocab,embed)
        self.filter_sizes = (2, 3, 4)
        self.embed = embed
        self.num_filters = 256
        self.dropout = 0.5
        self.num_classes = num_classes
        self.n_vocab = nvocab
        #通过padding_idx将<PAD>字符填充为0,因为他没意义哦,后面max-pooling自然而然会把他过滤掉哦
        self.embedding = nn.Embedding(self.n_vocab, self.embed, padding_idx=word2idx['<PAD>'])
        self.convs = nn.ModuleList(
            [nn.Conv2d(1, self.num_filters, (k, self.embed)) for k in self.filter_sizes])
        
        self.dropout = nn.Dropout(self.dropout)
        self.fc = nn.Linear(self.num_filters * len(self.filter_sizes), self.num_classes)
        
    def conv_and_pool(self, x, conv):
        x = F.relu(conv(x)).squeeze(3)
        x = F.max_pool1d(x, x.size(2)).squeeze(2)
        return x
        
    def forward(self, x):
        out = self.embedding(x)
        out = out.unsqueeze(1)
        out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)
        out = self.dropout(out)
        out = self.fc(out)
        return out