决策树算法
程序员文章站
2022-06-13 15:51:35
...
有勇气的牛排
官网:https://lgch.xyz/ 或 http://920z.net/
兼职写代码赚米,可进官网查看,千人团队,实力营销,同多家淘宝等店铺、流量平台合作,质量靠谱,欢迎加入。
from sklearn import tree
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
if __name__ == "__main__":
# 加载数据
dataset = load_iris()
# 提取属性数据
X = dataset.data
# 提取标签数据
y = dataset.target
# train_test_split函数用于划分数据集为训练集和测试集,其中参数test_size默认为0.25,表示将25%的数据划分为测试集
Xd_train, Xd_test, y_train, y_test = train_test_split(X, y, random_state=14)
# 创建决策树分类器
clf = tree.DecisionTreeClassifier()
# 训练分类器模型
clf = clf.fit(Xd_train, y_train)
y_predicted = clf.predict(Xd_test)
# 计算预测准确率
accuracy = np.mean(y_predicted == y_test) * 100
print("y_test {}", y_test)
print("y_predicted", y_predicted)
print("accuracy:", accuracy)