Hdu 1717 小数化分数2
众所周知,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几、千分之几……的数。那么无限小数能否化成分数? 首先我们要明确,无限小数可按照小数部分是否循环分成两类:无限循环小数和无限不循环小数。无限不循
众所周知,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几、千分之几……的数。那么无限小数能否化成分数?
首先我们要明确,无限小数可按照小数部分是否循环分成两类:无限循环小数和无限不循环小数。无限不循环小数不能化分数,这在中学将会得到详尽的解释;无限循环小数是可以化成分数的。那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:
⑴ 把0.4747……和0.33……化成分数。
想1: 0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747…… =47
那么 0.4747……=47/99
想2: 0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1) ×0.33……=3
即9×0.33……=3
那么0.33……=3/9=1/3
由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
⑵把0.4777……和0.325656……化成分数。
想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以, 0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以, 0.325656……=3224/9900
将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同.
将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同.
#includeint Gcd (int x,int y) { return y==0?x:Gcd(y,x%y); } int main () { int T; scanf("%d",&T); while (T--) { char str[15]; scanf("%s",str); bool t=false; //是否循环 int p=0,q=0; //p不循环部分位数,q循环部分位数 int x=0,y; //x不循环部分数值,y小数数值 int k=1,l=1,tmp; for (int i=2;str[i];i++) { if (t==false && str[i]!='(') {p++;x*=10;x+=str[i]-'0';} if (t && str[i]!=')') {q++;y*=10;y+=str[i]-'0';} if (str[i]=='(') {t=true;y=x;q=p;} } if (q==0) //不循环 { while (p--) k*=10; tmp=Gcd(x,k); printf("%d/%d\n",x/tmp,k/tmp); } else { int m=y-x; while (p--) k*=10; while (q--) l*=10; int n=l-k; tmp=Gcd(m,n); printf("%d/%d\n",m/tmp,n/tmp); } } return 0; }
上一篇: 无限分类&树型论坛的实现_PHP教程
下一篇: php写的一个删除目录的函数