欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

快手正式发布了基于流式的直播多码率自适应标准 LAS

程序员文章站 2022-06-13 12:33:46
...

快手正式发布了基于流式的直播多码率自适应标准 LAS(Live Adaptive Streaming),其用于提供低延迟、平滑、流畅的直播体验

重点解决三大痛点:卡顿、模糊与延迟大。

对于这些问题,单独优化某一个指标并不难,难点在于彼此之间互相制约。例如通过降低码率能降低卡顿率,提升观看直播的流畅度,但降低码率损失了清晰度的体验,会引起直播画面模糊。同时低延迟会带来良好的体验感受,但过低的延迟,客户端的缓存数据也越少,对网络抖动的抗性也越差,又会增加用户的卡顿风险。

多码率方案已经成为平衡清晰度与卡顿的最佳选择

 

多码率自适应是在抖动网络下保证观看流畅度最有效的手段之一,主要包括 MPEG-DASH 和 HLS 这类国际标准协议。优点在于部署快,见效快。但二者均是基于分片传输,设计之初主要用于点播场景,而非直播

直接用于直播场景会造成延迟过大,直接影响直播体验

 

本次快手推出的直播多码率自适应方案包含两大特性:一是基于流式传输,保证低延时;二是支持多码率,依据每个用户的网络状态,自适应选择最佳的视频清晰度。

 

与传统的基于分片的多码率架构相比,基于流式的直播多码率能提供更低的延迟,在架构上也有一些特性,主要包括:

 

转码:不同于 MPEG-DASH 或 HLS,基于流式的直播多码率方案在转码时不需要进行切片操作,只需在转码时保证不同的转码流 I 帧的 pts 严格对齐,从而保证视频流的无缝切换

 

CDN 功能升级:CDN 侧也即基于流式的直播多码率方案的服务侧,需要升级支持三种拉流模式,即默认位置拉流(传统拉流模式)、绝对位置拉流(指定吐流绝对位置)与相对位置拉流(指定吐流相对位置)

 

自适应算法:在自适应算法上,与分片传输的策略相比,基于流式的传输逻辑会一定程度增加自适应算法的难度(例如在流式传输中,因为源数据实时产生,观测到的平均带宽值近似等于当前请求的视频码率,无法反应真实的带宽),但流式架构更加灵活,并且能显著降低分片架构中存在的传输 ON-OFF 现象,从而降低了码率切换过于频繁的问题。

 

上一篇: 切长条 贪心

下一篇: pythonweb day02