欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

matplotlib绘图

程序员文章站 2022-03-01 15:50:50
...

1. matplotlib 绘图

1.1. 案例一(折线图)

import matplotlib
import random
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font",family='MicroSoft YaHei',weight="bold")
# x,y的取值
x = range(120)
y = [random.randint(20, 35) for i in range(120)]
# 绘图
plt.figure(figsize=(20, 8), dpi=80)
plt.plot(x, y)
# 设置x轴的刻度
_xtick_labels = ["10点{}分".format(i) for i in range(60)]
_xtick_labels += ["11点{}分".format(i) for i in range(60)]
plt.xticks(list(x)[::3], _xtick_labels[::3], rotation=45)
# 设置x轴,y轴的名称
plt.xlabel("时间")
plt.ylabel("温度 单位(℃)")
# 设置图名称
plt.title("10点到12点每分钟的气温变化情况")
# 显示图
plt.show()

1.2. 案例二(折线图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

y_1 = [1, 0, 1, 1, 2, 4, 3, 2, 3, 4, 4, 5, 6, 5, 4, 3, 3, 1, 1, 1]
y_2 = [1, 0, 3, 1, 2, 2, 3, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]

x = range(11, 31)

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

plt.plot(x, y_1, label="自己", color="#F08080")
plt.plot(x, y_2, label="同桌", color="#DB7093", linestyle="--")

# 设置x轴刻度
_xtick_labels = ["{}岁".format(i) for i in x]
plt.xticks(x, _xtick_labels)
# 设置y轴的刻度
plt.yticks(range(0, 9))

# 绘制网格
plt.grid(alpha=0.4, linestyle=':')

# 添加图例
plt.legend(loc="upper left")

plt.xlabel("年龄")
plt.ylabel("女朋友个数")
plt.title("11岁到30岁你和同桌交往女朋友的个数趋势图")
# 展示
plt.show()


1.3. 案例三(条形图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_16 = [15746, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]
# 条形图宽度
bar_width = 0.2
# 条形图的位置
x_14 = list(range(len(a)))
x_15 = [i + bar_width for i in x_14]
x_16 = [i + bar_width * 2 for i in x_14]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)
# 回执条形图
plt.bar(x_14, b_14, width=bar_width, label="9月14日")
plt.bar(x_15, b_15, width=bar_width, label="9月15日")
plt.bar(x_16, b_16, width=bar_width, label="9月16日")

# 设置图例
plt.legend(loc="upper left")

# 设置x轴的刻度
plt.xticks(x_15, a)

plt.xlabel("电影名称")
plt.ylabel("电影票房数")
plt.title("电影票房数对比")

# 保存图片到本地
plt.savefig("my.svg")

plt.show()

1.4. 案例四(直方图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
     101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
     95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
     123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
     132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
     123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
     115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
     106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
     130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
     106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
     133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]

# 计算组数
d = 3  # 组距

num_bins = (max(a) - min(a)) // d

print(max(a), min(a), max(a) - min(a))
print(num_bins)

# 设置图形的大小
plt.figure(figsize=(20, 8), dpi=80)
plt.hist(a, num_bins, density=True)

# 设置x轴的刻度
plt.xticks(range(min(a), max(a) + d, d))

plt.title("直方图")
plt.xlabel("组距")
plt.ylabel("所占百分比")

plt.grid()

plt.show()

1.5. 案例五(散点图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

y_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22,
       22, 23]
y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13,
        12, 13, 6]

x_3 = range(1, 32)
x_10 = range(51, 82)

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 使用scatter方法绘制散点图,和之前绘制折线图的唯一区别
plt.scatter(x_3, y_3, label="3月份")
plt.scatter(x_10, y_10, label="10月份")

# 调整x轴的刻度
_x = list(x_3) + list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in x_3]
_xtick_labels += ["10月{}日".format(i - 50) for i in x_10]
plt.xticks(_x[::3], _xtick_labels[::3], rotation=45)

# 添加图例
plt.legend(loc="upper left")

# 添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("标题")
# 展示
plt.show()

1.6. 案例六(条形图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]

b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

# 设置图形大小
plt.figure(figsize=(20, 15), dpi=80)
# 绘制条形图
plt.bar(range(len(a)), b, width=0.2)
# 设置字符串到x轴
plt.xticks(range(len(a)), a, rotation=45)

plt.savefig("./movie.png")

plt.title("电影票房数")
plt.xlabel("电影名称")
plt.ylabel("好评数")

plt.show()

1.7. 案例七(水平条形图)

import matplotlib
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]

b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)
# 绘制条形图
plt.barh(range(len(a)), b, height=0.3, color="orange")
# 设置字符串到x轴
plt.yticks(range(len(a)), a)

plt.grid(alpha=0.3)
# plt.savefig("./movie.png")

plt.title("电影票房数")
plt.xlabel("票房数:(单位:亿)")
plt.ylabel("电影名称")

plt.show()

2. pandas,numpy, matplotlib绘图案例

2.1. 案例一(条形图)

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

file_path = "./IMDB-Movie-Data.csv"
df = pd.read_csv(file_path)
df.info()

df['Genre'].head(3)
# 统计分类列表
temp_list = df['Genre'].str.split(",").tolist()
genre_list = list(set([i for j in temp_list for i in j]))
# 构造全零数组
zero_df = pd.DataFrame(np.zeros((df.shape[0], len(genre_list))), columns=genre_list)
# 给每个电影出现分类的位置赋值为1
for i in range(df.shape[0]):
    zero_df.loc[i, temp_list[i]] = 1
# 统计每个分类的电影的数量和
genre_count = zero_df.sum(axis=0)
# 排序
genre_count = genre_count.sort_values(ascending=False)
print(genre_count)
_x = genre_count.index
_y = genre_count.values
# 画图
plt.figure(figsize=(20,8), dpi=80)
plt.bar(range(len(_x)), _y, width=0.4, color='orange')
plt.xticks(range(len(_x)), _x, rotation=45)

plt.title("不同电影类别对应的电影数量")
plt.xlabel("类别")
plt.ylabel("电影数量")
plt.grid(alpha=0.4, linestyle=':')

plt.show()z`


2.2. 案例二(直方图)

import matplotlib
import pandas as pd
from matplotlib import pyplot as plt

# 设置字体
matplotlib.rc("font", family='MicroSoft YaHei', weight="bold")

file_path = "./IMDB-Movie-Data.csv"
df = pd.read_csv(file_path)

runtime_data = df['Rating'].values
max_runtime = runtime_data.max()
min_runtime = runtime_data.min()

# 计算数组
num_bin = (max_runtime - min_runtime) // 0.5
plt.figure(figsize=(20, 8), dpi=80)
plt.hist(runtime_data, int(num_bin))
print(min_runtime, max_runtime)
_x = [min_runtime]
i = min_runtime
while i <= max_runtime + 0.5:
    i = i + 0.5
    _x.append(i)

plt.xticks(_x)
plt.show()